
Highlights

Performing live time-traversal queries via SPARQL on RDF datasets

Arcangelo Massari, Silvio Peroni

• The most prominent knowledge bases do not support

SPARQL time-traversal queries on previous statuses

of their entities together with provenance informa-

tion

• The OpenCitations provenance model can manage

both provenance and change-tracking, complying with

RDF 1.1

• time-agnostic-library enables all the time-related re-

trieval functionalities via SPARQL live

Performing live time-traversal queries via SPARQL on RDF datasets

Arcangelo Massaria,∗, Silvio Peronia,b

aResearch Centre for Open Scholarly Metadata, Department of Classical Philology and Italian Studies, University of Bologna, Via
Zamboni, 33, Bologna, 40126, Italy

bDigital Humanities Advanced Research Centre (/DH.arc), Department of Classical Philology and Italian Studies, Via Zamboni,
33, Bologna, 40126, Italy

Abstract

This article introduces a methodology to perform live time-traversal SPARQL queries on RDF datasets and software

based on this methodology that offers a solution to manage the provenance and change-tracking of entities described

using RDF. These are crucial factors in ensuring verifiability and trust. Nevertheless, some of the most prominent

knowledge bases – including DBpedia, Wikidata, Yago, and the Dynamic Linked Data Observatory – do not support

time-agnostic queries, i.e., queries across different snapshots together with provenance information. The OpenCitations

Data Model (OCDM) describes one possible way to track provenance and entities’ changes in RDF datasets, and it allows

restoring an entity to a specific status in time (i.e., a snapshot) by applying SPARQL update queries. The methodology

and library presented in this article are based on the rationale introduced in the OCDM. We also developed benchmarks

proving that such a procedure is efficient for specific queries and less efficient for others. To the best of our knowledge,

our library is the only one to support all the time-related retrieval functionalities live, i.e., enabling real-time searches

and updates. Moreover, since OCDM complies with standard RDF, queries are expressed via standard SPARQL.

Keywords: provenance, change-tracking, time-traversal queries, RDF, SPARQL, OpenCitations

1. Introduction

Data reliability is based on provenance: who produced

information, when, and the primary source. Such prove-

nance information is essential because the truth value of

an assertion on the Web is never absolute, as claimed

by Wikipedia, which on its policy on the subject states:

“the threshold for inclusion in Wikipedia is verifiability,

not truth” [1]. The Semantic Web reinforces this aspect

since each application processing information must eval-

uate trustworthiness by probing the statements’ context

(i.e., the provenance) [2].

Moreover, data changes over time, for either the nat-

∗Corresponding author

Email addresses: arcangelo.massari@unibo.it (Arcangelo

Massari), silvio.peroni@unibo.it (Silvio Peroni)

ural evolution of concepts or the correction of mistakes.

Indeed, the latest version of knowledge may not be the

most accurate. Such phenomena are particularly tangi-

ble in the Web of Data, as highlighted in a study by the

Dynamic Linked Data Observatory, which noted the modi-

fication of about 38% of the nearly 90,000 RDF documents

monitored for 29 weeks and the permanent disappearance

of 5% [3].

Notwithstanding these premises, the most extensive

RDF datasets to date – DBPedia, Wikidata, Yago, and

the Dynamic Linked Data Observatory – either do not use

RDF to track changes or do not provide provenance in-

formation at the entity level [4–7]. Therefore, they don’t

allow SPARQL time-traversal queries on previous statuses

of their entities together with provenance information. For

Preprint submitted to Journal of Web Semantics May 15, 2023

instance, Wikidata allows SPARQL queries on entities tem-

porally annotated via its proprietary RDF extension but

does not allow queries on change-tracking data.

The main reason behind this phenomenon is that the

founding technologies of the Semantic Web – SPARQL,

OWL, and RDF – did not initially provide an effective

mechanism to annotate statements with metadata infor-

mation. This lacking led to the introduction of numerous

metadata representation models, none of which succeeded

in establishing itself over the others and becoming a widely

accepted standard to track both provenance and changes

to RDF entities [8–26].

In the past, some software was developed to perform

time-traversal queries on RDF datasets, enabling the re-

construction of the status of a particular entity at a given

time. However, some existing solutions need to prepro-

cess and index RDF data to work efficiently [27–31]. This

requirement is impractical for linked open datasets that

constantly receive many updates, such as Wikidata. For

example, “Ostrich requires ∼ 22 hours to ingest revision

9 of DBpedia (2.43M added and 2.46M deleted triples)”

[32]. Conversely, software operating on the fly either does

not support all query types [33], or supports them non-

generically by imposing a custom database [34] or a spe-

cific triplestore [35, 36].

This work introduces a methodology and a Python li-

brary enabling all the time-related retrieval functionalities

identified by Fernández et al. [37] live, i.e., allowing real-

time queries and updates without preprocessing the data.

Moreover, data can be stored on any RDF-compliant stor-

age system (e.g., RDF-serialized textual files and triple-

stores) when the provenance and data changes are tracked

according to the OpenCitations Data Model [38].

The rest of the paper is organized as follows. Section 2

reviews the literature on metadata representation models,

retrieval functionalities, and archiving policies for dynamic

linked data. Section 3 showcases the methodology underly-

ing the time-agnostic-library implementation, and Section

4 discusses the final product from a quantitative point of

view, reporting the benchmarks results on execution times

and memory.

2. Related works

This section reviews related metadata representation

models (Section 2.1) before delving into query typologies,

query languages (Section 2.2), and existing methodologies

to performing such queries (Section 2.3).

2.1. Representing dynamic linked data

The landscape of strategies to formally represent prove-

nance in RDF is vast and fragmented [39].

To date, the only W3C standard syntax for annotating

triples’ provenance is RDF reification [40] and it is the only

one to be back-compatible with all RDF-based systems.

However, there are several deprecation proposals for this

syntax [41], due to its poor scalability.

Different approaches have been proposed since 2005,

and four categories of solutions can be identified:

• Encapsulating provenance in RDF triples: n-ary re-

lations [42], PaCE [16] and singleton properties [17].

• Associating provenance to the triple through RDF

quadruples: named graphs [8], RDF/S graphsets [9],

RDF triple coloring [10], and nanopublications [43].

• Extending the RDF data model: Notation 3 Logic

[11], RDF+ [12], SPOTL(X) [14], annotated RDF

(aRDF) [13, 44], and RDF* [15].

• Using ontologies: Proof Markup Language [21], SWAN

Ontology [25], Provenir Ontology [23], Provenance

Ontology [45], Open Provenance Model [20], PREMIS

[24], Dublin Core Metadata Terms [26], and the OpenCi-

tations Data Model [38].

For a complete analysis and comparison, refer to Sikos

& Philp [39]. In this context it is important to stress that

2

most of these solutions do not comply with RDF 1.1 (i.e.,

RDF/S graphsets, N3Logic, aRDF, RDF+, SPOTL(X),

and RDF*), are domain-specific (i.e., Provenir, SWAN,

and PREMIS ontologies), rely on blank nodes (n-ary rela-

tions), or suffer from scalability issues (singleton proper-

ties, PaCE).

Despite being incompatible with RDF 1.1, it is worth

mentioning that a W3C working group has recently pub-

lished the first draft to make RDF* a standard [46].

To date, named graphs [8] and the Provenance Ontol-

ogy [47] are the most adopted approaches to attach prove-

nance metadata to RDF triples. On the one hand, Named

Graphs are widespread because they are compliant with

RDF 1.1 and can be queried with SPARQL 1.1; they are

scalable, and have several serialization formats (i.e., TriX,

TriG, and N-Quads). On the other, the Provenance Ontol-

ogy was published by the Provenance Working Group as

a W3C Recommendation in 2013, meeting all the require-

ments for provenance on the Web and collecting existing

ontologies into a single general model.

The OpenCitations Data Model [38] represent prove-

nance and track changes in a way that complies with RDF

1.1 and relies on well-known and widely adopted stan-

dards, PROV-O, named graphs, and Dublin Core, as will

be detailed in Section 3.

2.2. Querying dynamic linked data

Fernández, Polleres, and Umbrich [37] provided two

classifications on time agnostic queries, a low-level one re-

lating to “query atoms” and a high-level one about “re-

trieval needs”. In this article, we use the high-level clas-

sification, which is more explicit about the queries to re-

construct a full version of an entity, an entire delta, and

the query on multiples/all deltas, without the need to de-

rive them by composition between multiple queries atoms.

Before detailing such queries, it is required to define what

an entity, a time-aware dataset, and a version are.

Definition 1 (Entity). An entity E is the set of RDF

triples (s,p,o) having the same subject s.

Definition 2 (Time-aware dataset). A version anno-

tated entity is an entity E annotated with a label i repre-

senting the version in which this entity holds, denoted by

the notation Ei, where i ∈ N . A time-aware dataset A is

a set of version-annotated entities.

Definition 3 (Version). A version of a time-aware dataset

A at snapshot i is the RDF graph Ai = {E|Ei ∈ A}.

In the query definitions, the evaluation of a SPARQL

query Q on a graph G produces a bag of solution mappings

[[Q]]G .

Version materialization (VM) retrieves the full ver-

sion of a specific entity. Formally: VM(E , i) = Ei. For ex-

ample, “Get the 2014 snapshot of the entity representing

David Shotton”.

Single-version structured query (SV) retrieves the

results of a SPARQL query targeted at a specific version.

Formally: SV (Q,Vi) = [[Q]]Vi
. For example, “Which

David Shotton’s papers were featured in the dataset in

2014?”.

Cross-version structured query (CV)—also called

time-traversal query — retrieves the results of a SPARQL

query targeted at multiple versions. Formally:

CV (Q,Vi, Vj) = SV (Q,Vi) ⋊⋉ SV (Q,Vj). For example,

“Which David Shotton’s papers were featured in the dataset

in 2013 and in 2014?”.

Delta materialization (DM) retrieves the differences

of a specific entity between two consecutive versions. For-

mally: DM(E , Vi) = (∆+,∆−). With ∆+ = Ei\Ej , ∆− =

Ej\Ei and i, j ∈ N , i > j,∄k ∈ N : j < k < i. For example,

“What data changed about the entity representing David

Shotton in 2014?”.

Single-delta structured query (SD) retrieves the

change-sets of a SPARQL query’s results between one con-

secutive couple of versions. Formally: SD(Q,Vi, Vj) =

(∆+,∆−). With ∆+ = [[Q]]Vi\[[Q]]Vj , ∆− = [[Q]]Vj\[[Q]]Vi

3

and i, j ∈ N , i > j,∄k ∈ N : j < k < i. For exam-

ple, “Which David Shotton’s papers were featured in the

dataset in 2014 but not in 2013?”.

Cross-delta structured query (CD) retrieves the

change-sets of a SPARQL query’s results between more

than one consecutive couple of versions. Formally:

CD(Q,Vi, Vj , Vm) = SD(Q,Vi, Vj) ⋊⋉ SD(Q,Vj , Vm). For

example, “When were articles by David Shotton added to

or removed from the collection?”.

Extensions of SPARQL exist to support queries on

time-aware RDF datasets, that either require using non-

standard languages to map data — such as τ -SPARQL

[48], T-SPARQL [49], and AnQL [13] — or only works on

a purpose-built database, i.e. SPARQLT on the RDF-

TX system [50]. This article proposes a methodology to

support all query types on any triplestore in standard

SPARQL.

In this direction, SPARQ-LTL [51] proposes a relevant

approach by extending SPARQL but describing an algo-

rithm for rewriting queries in standard SPARQL, provided

that all triples are annotated with revision numbers and

the revisions are accessible as named graphs. However, to

the best of our knowledge, this strategy has no implemen-

tations.

2.3. Storing dynamic linked open data

This section will review existing storage and querying

methodologies, focusing on supported queries, real-time

operation, and generality. We consider generic a model

that complies with standard RDF and can be queried via

standard SPARQL on any RDF-compatible storage sys-

tem.

Various archiving policies have been elaborated to store

and query the evolution of RDF datasets, namely indepen-

dent copies, change-based, timestamp-based, and fragment-

based policies [32].

Independent copies consist of storing each version sep-

arately. It is the most straightforward model to implement

and allows performing VM, SV, and CV easily. However,

this approach needs a massive amount of space for storing

and time for processing. Furthermore, given the different

statements’ versions, further diff mechanisms are required

to identify what changed. Nevertheless, to date, this is

the archiving policy adopted by most systems and knowl-

edge bases, such as DBPedia [52], Wikidata [5, 53, 54], and

YAGO [6].

The first version control systems for RDF was SemVer-

sion [55], specially tailored for ontologies. It saves each

version of an ontology in a separate snapshot and differ-

ences are calculated on the fly. SemVersion supports VM,

SV, DM, and SD but not via SPARQL, because SPARQL

became a W3C Recommendation in 2008 and SemVersion

has not been updated since 2005.

The change-based policy was introduced to solve scal-

ability problems caused by the independent copies ap-

proach. It consists of saving only the deltas between one

version and the other. For this reason, DM is costless.

The drawback is that additional computational costs for

delta propagation are required to support version-focused

queries.

The first proposal of this approach relied on a RDBMS

to store the original dataset and the deltas between two

consecutive versions [27]. To improve performance, deltas

are pre-processed and duplicated, or unnecessary modifi-

cations are deleted. There is no support for SPARQL and

queries must be formulated in SQL.

A concrete implementation of a change-based policy is

R&Wbase, a version control system inspired by Git but

designed for RDF [35]. Additions and deletions are stored

in separate named graphs, and all queries are supported.

However, this model is not fully semantic, since it requires

hash tables to map revisions with change-sets. In addition,

it is not triplestore-agnostic, as it supports only Fuseki and

Virtuoso.

R43ples is inspired by R&WBase and perfects it by

adopting a totally semantic model [34]. It is called Revi-

4

sion Management Ontology and records change-sets and

the related provenance metadata in separate graphs using

PROV-O and some new properties (e.g., rmo:deltaAdded

and rmo:deltaRemoved). R43ples acts as a proxy between

the data triplestore and the provenance triplestore. How-

ever, R43ples cannot be considered a generic solution, as

it extends SPARQL with some keywords to simplify the

queries (e.g., REVISION, TAG, MERGE), and the current im-

plementation mandates using Jena TDB as the provenance

triplestore.

The timestamp-based policy annotates each triple with

its transaction time, that is, the timestamp of the version

in which that statement was in the dataset.

x-RDF-3X is a database for RDF designed to manage

high-frequency online updates, versioning, time-traversal

queries, and transactions [28]. The triples are never deleted

but are annotated with two fields: the insertion and dele-

tion timestamp, where the last one has zero value for cur-

rently living versions. Afterward, updates are saved in

a separate workspace and merged into various indexes at

occasional savepoints. x-RDF-3X supports VM and SV

queries.

v-RDFCSA uses a similar strategy but excels in reduc-

ing space requirements, compressing both the RDF archive

and the timestamps attached to the triples [29]. It has

basic query capabilities (VM, SV, DM, and SD on sin-

gle triple patterns), and, similarly to HDT [56], SPARQL

updates are not supported.

Dydra [57] is also a TB storage system, which indexes

quadruples and associates their creation and addition times

to form quintuples. It supports all query types but extend-

ing SPARQL with the REVISION keyword.

The fragment-based approach avoids reconstructing ver-

sions via deltas by saving only fragments of what changed.

Different granularity levels are possible, depending on the

requirements (a graph, a subgraph, or an entity).

Quit Store [36] inherits from R&Wbase and R43ples

the Git-based distributed version control management ap-

proach. Modified fragments are saved in named graphs,

and metadata are modeled according to PROV-O. The

data model complies with RDF 1.1, and all query types

are supported in plain SPARQL 1.1. However, the current

implementation suffers from high memory requirements,

as all queries are run on an in-memory quad-store.

Finally, there are hybrid storage policies that combine

the changed-based approach with the timestamp-based ap-

proach. For example, OSTRICH is a triplestore that re-

tains the first version of a dataset and subsequent deltas, as

introduced in [27]. However, it merges change-sets based

on timestamps to reduce redundancies between versions,

adopting a change-based and timestamp-based approach

simultaneously [30]. OSTRICH has native support for all

types of queries.

TailR [58] also preserves the first version and succeed-

ing diffs but reduces the computational effort to recon-

struct versions by also saving some intermediate snapshots,

adopting an IC/CB approach, and thus increasing space

requirements. Queries are not made via SPARQL but via

the Memento protocol, i.e., HTTP content-negotiation via

the Accept-Datetime header [59].

As Section 3 will detail, the OpenCitations Data Model

[60] adopts a hybrid CB/TB approach and represents prove-

nance and changes complying with RDF. At the same

time, this paper introduces time-agnostic-library, which

enables all types of queries using plain SPARQL on files

or any triplestores live.

3. Methodology

As discussed in section 2, Semantic Web technologies

did not initially allow recording or querying change-tracking

provenance. For this reason, it is necessary to adopt an ex-

ternal provenance model. In the context of this work, the

OpenCitations Data Model (OCDM) was employed [38],

summarized in Fig. 1.

According to the OCDM, a new snapshot is defined ev-

ery time an entity is created or modified, and it is stored

5

Methodology Storage paradigm Queries Live* Generic**

SemVersion [55] IC VM, SV, DM, SD + -d

x-RDF-3X [28] TB VM, SV - -a,e

RBDMS [27] CB All - -c,d

R&WBase [35] CB All + -c,e

R43ples [34] CB All + -b,e

TailR [58] IC/CB All + -d

v-RDFCSA [29] TB VM, SV, DM, SD - -e

RDF-TX [50] TB All - -b,e

OSTRICH [30] IC/CB/TB All - -e

Dydra [57] TB All - -a,b,e

Quit Store [36] FB All + -b

OCDM and time-agnostic-library [60] CB/TB All + +

Table 1: Comparative between time-agnostic-library and preexisting software to perform time-agnostic queries on RDF datasets

* By “live” we mean that updates and queries can be executed in real time, without requiring pre-processing

** By “generic” we mean that provenance and change-tracking are modeled complying with RDF and can be queried via standard

SPARQL on any RDF-compatible storage system

a. It extends RDF

b. It extends SPARQL

c. It requires hash tables

d. It does not use SPARQL to perform queries

e. It requires a custom or specific database

within a (provenance) named graph. The snapshots are

of type prov:Entity and are connected to the entity de-

scribed through prov:specializationOf. In addition,

each snapshot records the validity dates

(prov:generatedAtTime, prov:invalidatedAtTime), the

agents responsible for creation/modification of entities’ data

(prov:wasAttributedTo), the primary sources

(prov:hasPrimarySource), a link to the previous snap-

shot in time (prov:wasDerivedFrom), and a human read-

able description (dcterms:description).

Furthermore, OCDM extends the Provenance Ontol-

ogy by introducing a new property called

oco:hasUpdateQuery, a mechanism to record additions

and deletions from an RDF graph with a SPARQL INSERT

and SPARQL DELETE query string. This system makes it

easier to:

• recover the current statements of an entity, as they

are those available in the present dataset;

• restore an entity to a specific snapshot si, by apply-

ing the reverse operations of all update queries from

the most recent snapshot sn to si+1.

SPARQL update queries representing deltas must contain

only absolute URIs, literals, and blank nodes, while pre-

fixes and variables are not permitted.

From now on, we use the exemplar dataset with prove-

nance and change-tracking information described in sec-

tion 4 to introduce all the examples discussed in the fol-

lowing paragraphs. As shown in the Graffoo diagram [61]

in Fig. 2 and Listing 1, the entity <id/80178>, repre-

6

Figure 1: Provenance in the OpenCitations Data Model, represented

using the graphical framework Graffoo

senting [62], is associated with the bibliographic resource

<br/86766>, whose title is Open access and online pub-

lishing: a new frontier in nursing?. Moreover, <br/86766>

cites five other resources, namely <br/301102>,<br/301103>,

<br/301104>, <br/301105>, and <br/301106>. The iden-

tifier <id/80178> of <br/86766> was initially registered

with a wrong DOI, i.e. “10.1111/j.1365-2648.2012.06023.x.”

instead of “10.1111/j.1365-2648.2012.06023.x”, where the

error is in the trailing period. The agent identified by

the ORCID 0000-0002-8420-0696 corrected such a mis-

take on October 19th, 2021, at 19:55:55. Therefore, the

snapshot <id/80178/prov/se/2> was generated, associ-

ated with <id/80178>, and deriving from the previous

snapshot <id/80178/prov/se/1>.

The taxonomy by Fernández, Polleres, and Umbrich

[37] introduced in section 2.2 is used to illustrate which

approaches were adopted to achieve each type of query.

Therefore, a distinction is made between version mate-

rialization, delta materialization, single and cross-version

structured query, single and cross-delta structured query.

3.1. Version and delta materialization

Obtaining a version materialization means retrieving

the full version of a specific entity. Thus, the starting

information is a resource URI and a time. Then, it is

necessary to acquire the provenance information available

for that entity, querying the dataset on which it is stored.

In particular, the crucial data regards the existing snap-

shots, their generation time, and update queries expressing

changes through SPARQL update query strings.

From a performance point of view, the main problem

is how to get the status of a resource at a given time with-

out reconstructing its whole history, but only the portion

needed to get the result. Suppose tn is the present state

and having all the SPARQL update queries. The status of

an entity at the time tn−k can be obtained by adding the

inverse queries in the correct order from n to n−k+1 and

applying the queries sum to the entity’s present graph.

For example, consider the graph of the entity <id/80178>

(Fig. 2). At present, this identifier has a literal value of

“10.1111/j.1365 2648.2012.06023.x”. We want to deter-

mine if this value was modified recently, reconstructing

the entity at time tn−1. The string associated with the

property oco:hasUpdateQuery at time tn is shown in Fig.

2 and Listing 1.

Therefore, to reconstruct the literal value of

<id/80178> at time tn−1, it is sufficient to apply the same

update query to the current graph by replacing DELETE

with INSERT and INSERT with DELETE: what was deleted

must be inserted, and what was inserted must be deleted to

rewind the entity’s time. It appears that <id/80178> had

a different literal value at time tn−1, namely “10.1111/j.1365-

2648.2012.06023.x.”. If the resource had more than two

snapshots and the time of interest had been tn−2, it would

have been necessary to execute the same operation with

the sum of the update queries associated with tn and tn−1

in this order.

In addition to data, metadata related to a given change

can be derived, asking for supplementary information to

7

Figure 2: Usage example of the OpenCitations Data Model, shown via the graphical framework Graffoo

the provenance dataset, such as the responsible agent and

the primary source. In this way, it is possible to un-

derstand who made a specific change and the informa-

tion’s origin. Finally, hooks to metadata related to non-

reconstructed states can be returned to find out what other

snapshots exist and possibly rebuild them.

The flowchart in Fig. 3 summarizes the version mate-

rialization methodology.

The process described so far is efficient in materializing

a specific entity’s version. However, if the goal is to obtain

the history of a given resource, adopting the procedure de-

scribed in Fig. 3 would mean executing, for each snapshot,

all the update queries of subsequent snapshots, repeating

the same update query over and over again. Since every

resource graph needs to be output, it is more convenient to

run the reverse update query related to each snapshot on

the following snapshot graph, which was previously com-

puted and stored.

Conversely, obtaining the materialization of a delta

means returning the change between two versions. No

operations are introduced in our methodology to address

this operation because it is not needed since the OCDM

already requires deltas to be explicitly stored as SPARQL

update queries strings by adopting a change-based policy.

Therefore, the diff is the starting point and is immedi-

ately available, without the need of processing provenance

change tracking data to derive it. However, if more than

a mere delta is required, and there is the demand to per-

form a single or cross-delta structured query, it is helpful to

have approaches to speed up this operation, as illustrated

in section 3.3.

3.2. Single and cross-version structured query

Running a structured query on versions means resolv-

ing a SPARQL query on a specific entity’s snapshot, if it

is a single-version query, or on multiple dataset’s versions,

8

Algorithm 1: Version materialization

Function get state at time(res, time, include prov metadata=False):

results = execute sparql query(query snapshots);

if results is empty then

return None, None, None;

sort results by time descending(results);

relevant results = filter results by time interval(time, results);

other snapshots metadata = create empty dictionary();

entity snapshots = create empty dictionary();

entity graphs = create empty dictionary();

if include prov metadata is True then

other snapshots = filter other snapshots(results, relevant results);

other snapshots metadata = create empty dictionary();

for other snapshot in other snapshots do

other snapshots metadata[snapshot uri] = {

”generatedAtTime”: other snapshot[generation time],

”wasAttributedTo”: other snapshot[responsible agent],

”hadPrimarySource”: other snapshot[primary source]

};

if relevant results is empty then

return entity graphs, entity snapshots, other snapshots metadata;

entity present graph = query dataset();

for relevant result in relevant results do
sum update queries = “”;

for result in results do

if result[update query] is not null then

if convert to datetime(result[generation time]) >

convert to datetime(relevant result[generation time]) then

sum update queries += result[update query] + “;”;

execute update queries(entity present graph, sum update queries);

entity graphs[convert to datetime(relevant result[1], stringify=True)] = entity present graph;

entity snapshots[relevant result[0]] = {

”generatedAtTime”: relevant result[generation time],

”wasAttributedTo”: relevant result[responsible agent],

”hadPrimarySource”: relevant result[primary source]

};

return entity graphs, entity snapshots, other snapshots metadata;

9

@base <https://github.com/opencitations/time-agnostic-library/>.
@prefix cito: <http://purl.org/spar/cito/>.
@prefix datacite: <http://purl.org/spar/datacite/>.
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix literal: <http://www.essepuntato.it/2010/06/literalreification/>.
@prefix oco: <https://w3id.org/oc/ontology/>.
@prefix prov: <http://www.w3.org/ns/prov#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

<br/86766> a <http://purl.org/spar/fabio/Expression>;
dcterms:title "Open access and online publishing: a new frontier in nursing?"^^xsd:string;
cito:cites <br/301102>, <br/301103>, <br/301104>, <br/301105>, <br/301106>;
datacite:hasIdentifier <id/80178>.

<id/80178> a datacite:Identifier;
datacite:usesIdentifierScheme datacite:doi;
literal:hasLiteralValue "10.1111/j.1365-2648.2012.06023.x"^^xsd:string.

<id/80178/prov/se/2> a prov:Entity;
oco:hasUpdateQuery "

DELETE DATA {
GRAPH <https://github.com/opencitations/time-agnostic-library/id/> {

<https://github.com/opencitations/time-agnostic-library/id/80178>
<http://www.essepuntato.it/2010/06/literalreification/hasLiteralValue>
'10.1111/j.1365-2648.2012.06023.x.' . } };

INSERT DATA {
GRAPH <https://github.com/opencitations/time-agnostic-library/id/> {

<https://github.com/opencitations/time-agnostic-library/id/80178>
<http://www.essepuntato.it/2010/06/literalreification/hasLiteralValue>
'10.1111/j.1365-2648.2012.06023.x' . } }"^^xsd:string.

dcterms:description "The entity 'https://github.com/opencitations/time-agnostic-library/id/80178' has been
modified."^^xsd:string;↪→

prov:generatedAtTime "2021-10-19T19:55:55"^^xsd:dateTime;
prov:specializationOf <id/80178>;
prov:wasAttributedTo <https://orcid.org/0000-0002-8420-0696>;
prov:wasDerivedFrom <id/80178/prov/se/1>;

<id/80178/prov/se/1> a prov:Entity;
dcterms:description "The entity 'https://github.com/opencitations/time-agnostic-library/id/80178' has been

created."^^xsd:string;↪→

prov:generatedAtTime "2021-10-10T23:44:45"^^xsd:dateTime;
prov:hadPrimarySource <https://api.crossref.org/works/10.1007/s11192-019-03265-y>;
prov:invalidatedAtTime "2021-10-19T19:55:55"^^xsd:dateTime;
prov:specializationOf <id/80178>;
prov:wasAttributedTo <https://orcid.org/0000-0002-8420-0696>.

Listing 1: Usage example of the OpenCitations Data Model, translated in RDF Turtle syntax

in case of a cross-version query. In both cases, a strategy

must be devised to achieve the result efficiently. Accord-

ing to the OCDM, only deltas are stored; therefore, the

dataset’s past conditions must be reconstructed to query

those states. However, restoring as many versions as snap-

shots would generate massive amounts of data, consuming

time and storage. The proposed solution is to reconstruct

only the past resources significant for the user’s query.

Hence, given a query, the goal is to explicit all the

variables, materialize every version of each entity found,

and align the respective graphs temporally to execute the

original query on each. To this end, the first step is to

process the SPARQL query string and extract the triple

patterns. Each identified triple may be joined or isolated.

Definition 4 (Joined and isolated triple pattern). A

triple pattern is joined if a path exists between its subject

variable and a subject IRI in the query.

Assume there are pairwise disjoint infinite sets I, V,

and L (IRIs, Variables, and Literals, respectively), and as-

sume Path(n, n1) returns True if there is a route through a

graph between the graph nodes n and n1. Joined(s, p, o) ⇔

10

Figure 3: Flowchart illustrating the methodology to materialize an entity version at a given period

∃(s1, p1, o1) : Path(s, s1), s1 ∈ I, with (s, p, o) ∈ (I ∪ V)×

(I ∪ V)× (I ∪ L ∪ V).

Viceversa, a triple pattern is said to be isolated if such

path not exists.

If a triple pattern in the input query is joined, it is pos-

sible to solve its variables using a previously reconstructed

entity graph.

Consider the example in Listing 2. Once all versions of

<br/86766> have been materialized, every possible value

of the variable ?br is known. At that point, all the possi-

ble values that ?id had can be derived from all the URIs

of ?br. Also, the variable ?value can be resolved simi-

larly. It is worth noting that a variable can have differ-

ent values not only in different versions but also in the

same version. For instance, the bibliographical resource

<br/86766> cites more than just another bibliographical

resource (as shown in Fig. 2). Hence, ?br takes multiple

values in all of its snapshots, determining the same for ?id

and ?value.

On the other hand, a triple pattern is isolated if it is

wholly disconnected from the other patterns in the query,

and its subject is a variable. The query is more generic

if there are isolated triples; therefore, identifying the rele-

vant entities is more demanding. However, if at least one

URI is specified in the query, it is still possible to narrow

the field so that only the strictly necessary entities are re-

stored and not the whole dataset. Since deltas are saved

as SPARQL strings, a textual search on all available deltas

can be executed to find those containing the known URIs.

The difference between a delta triple including all the iso-

lated triple URIs and the isolated triple itself is equal to

the relevant entities to rebuild. Listing 3 shows a time-

traversal query to find all identifiers whose literal value has

ever contained a trailing dot. Inside, there is the isolated

triple pattern ?id literal:hasLiteralValue ?literal,

where only the predicate is known, and the subject is not

explicable by other triples within the query.

Identifying all the possible values of ?id and ?literal

at any time means discovering which nodes have ever been

connected by the predicate literal:hasLiteralValue.

This information is enclosed in the values of

oco:hasUpdateQuery within the provenance entities’ snap-

11

PREFIX literal: <http://www.essepuntato.it/2010/06/literalreification/>

PREFIX cito: <http://purl.org/spar/cito/>

PREFIX datacite: <http://purl.org/spar/datacite/>

SELECT DISTINCT ?br ?id ?value

WHERE {

<https://github.com/opencitations/time-agnostic-library/br/86766> cito:cites ?br.

?br datacite:hasIdentifier ?id.

?id literal:hasLiteralValue ?value.

}

Listing 2: Example of a SPARQL query containing only joined triple patterns

PREFIX literal: <http://www.essepuntato.it/2010/06/literalreification/>

SELECT ?literal

WHERE {

?id literal:hasLiteralValue ?literal.

FILTER REGEX(?literal, "\.$")

}

Listing 3: Example of a SPARQL query containing an isolated triple pattern

shots. First, the update queries including the predicate

literal:hasLiteralValue must be isolated. Then, they

have to be parsed in order to process the triples inside. All

subjects and objects linked by literal:hasLiteralValue

are reconstructed to answer the user’s time-agnostic query.

It is worth mentioning that a user query can contain

both joined and isolated triples. In this case, the dis-

connected triples are processed by carrying out textual

searches on the diffs. In contrast, the connected ones are

solved by recursively explicating the variables inside them,

as we saw.

After detecting the relevant resources concerning the

user’s query, the next step depends on whether it is a

single-version or a cross-version query. In the first case,

for better efficiency, it is not necessary to reconstruct the

whole history of every entity, but only the portion in-

cluded in the input time. On the contrary, for cross-version

queries, all the relevant versions of each resource must be

restored. In both cases, the method adopted is the version

materialization described in section 3.1.

However, the initial search cannot be answered even

after all the relevant data records are obtained. Restored

snapshots must be aligned to get a complete picture of

events. In particular, since the property oco:hasUpdateQuery

only records changes, if an entity was modified at time tn,

but not at tn+1, that entity will appear in the tn-related

delta but not in the tn+1 one. The tn+1 graph would not

include that resource, although it should be present. As a

solution, entities present at time tn but absent in the fol-

lowing snapshot must be copied to the tn+1-related graph

because they were not modified. Finally, entities’ graphs

are merged based on snapshots so that contemporary in-

formation is part of the same graph.

After the pre-processing described so far, performing

the time-traversal query becomes a trivial task. It is suffi-

cient to execute it on all reconstructed graphs, each associ-

ated with a snapshot relevant to that query and containing

the strictly necessary information to satisfy the user’s re-

12

quest.

The flowchart in Fig. 4 summarizes the single-version

and cross-version query methodology.

3.3. Single and cross-delta structured query

Performing a structured query on deltas means focus-

ing on change instead of the overall status of a resource.

On the one hand, if the interest is limited to a specific

change instance, it is called a single-delta structured query.

On the other hand, if the structured query is run on the

whole dataset’s changes history, it is named a cross delta

structured query.

Theoretically, employing the OCDM, it is possible to

conduct searches on deltas without needing a dedicated

library. For example, the query in Listing 4 can be used

to find those identifiers whose strings have been modified.

However, a similar SPARQL string requires the user to

have a deep knowledge of the data model. Therefore, it

is valuable to introduce a method to simplify and general-

ize the operation, hiding the complexity of the underlying

provenance pattern.

From Listing 4, it is possible to derive two require-

ments: the user shall identify the entities he is interested

in through a SPARQL query and specify the properties

to study the change. In addition, to allow both single-

delta and cross-delta structured queries, it is necessary to

provide the possibility of entering a time.

Consequently, the first step is to discover the entities

that respond to the user’s query. One might think that it

is enough to search them on the data collection and store

the resources obtained. However, only the URIs currently

contained in the dataset would be acquired, excluding the

deleted ones. A strategy similar to that described for time-

traversal queries must be implemented to satisfy the user’s

research across time. The query has to be pre-processed,

extracting the triple patterns and recursively explicating

the variables for the non-isolated ones. To this end, the

past graphs of the (gradually) identified resources must be

reconstructed, and the procedure is identical to the version

query’s one shown in Fig. 4. Likewise, if the user has input

a time, only versions within that period are materialized;

otherwise, all states are rebuilt. However, the difference

is in the purpose because there is no need to return pre-

vious versions in this context. Rebuilding past graphs is

a shortcut to explicate the query variables and identify

those relevant resources in the past but not in the present

dataset state. Thereby, as far as isolated triples patterns

are concerned, the procedure is more streamlined. Once

their URIs have been found within the update queries and

the relevant entities have been stored, there is no reason

to get their past conditions since they are isolated.

After all relevant entities are found, suppose a set of

properties is input. In that case, the previously collected

resources must be filtered, only keeping those that changed

the values in the properties’ set. This information can be

obtained from the provenance data. On the contrary, if

no predicate was indicated, it is necessary to restrict the

field to those entities that have received any modification.

Finally, the relevant modified entities are returned con-

cerning the specified query, properties, and time, when

they changed and how.

The flowchart in Fig. 5 summarizes the single-delta

and cross-delta structured query methodology.

3.4. Implementation

We concretely implemented this methodology in a Python

package, time-agnostic-library, distributed as open-source

software on GitHub and Zenodo under the ISC license,

archived on Software Heritage for long-term preservation,

and downloadable with pip [63]. It makes three main

classes available to the user: AgnosticEntity, VersionQuery,

and DeltaQuery, for materializations, version queries, and

delta queries. All three operations can be performed over

the entire history available or by specifying a time interval

via a tuple in the form (START, END). In this way, each of

the six retrieval functionalities considered in the taxonomy

13

Figure 4: Flowchart illustrating the methodology to perform single-time and cross-time structured queries on versions

by Fernández et al. can be accomplished [64].

The package was tested on Blazegraph, GraphDB, Apache

Jena Fuseki, and OpenLink Virtuoso, and it is fully com-

patible with these triplestores. In addition, time-agnostic-

library provides configuration parameters to take advan-

tage of the full-text indexing systems integrated into each

of the mentioned databases to achieve instant text searches.

Moreover, the library enables one to specify the URL

of a triplestore to use as a cache. The benefits of using

this cache mechanism are illustrated as follows:

1. All past reconstructed graphs are saved on triple-

store and never on RAM. Then, the impact of the

process on the RAM is highly reduced.

2. Time-traversal queries are executed on the cache triple-

store and not on graphs saved in RAM. Therefore,

they are faster, as most triplestores implement op-

timization strategies to run queries efficiently. For

example, Blazegraph uses B+Tree as a data struc-

ture, which provides search operations in logarithmic

amortized time [65].

3. If a query is launched a second time, the already

recovered entities’ history is not reconstructed but

derived from the cache.

However, the cache has three disadvantages: first, it

takes up space; secondly, the current implementation does

not quicken the relevant entities’ discovery, and the vari-

ables must be solved each time. Third, the first execution

slows down the query, as the information must be loaded

into the cache triplestore.

Test-Driven Development (TDD) [66] was adopted as

a software development process, and a total of 155 tests

were developed, with 100% coverage. Finally, the en-

tire test procedure was automated to ensure reproducibil-

ity, including downloading and extracting the necessary

databases and starting them. For detailed documentation

on the operation and use of time-agnostic-library and the

cache system, see [67].

14

PREFIX datacite: <http://purl.org/spar/datacite/>

PREFIX oco: <https://w3id.org/oc/ontology/>

PREFIX prov: <http://www.w3.org/ns/prov#>

SELECT DISTINCT ?id

WHERE {

?se prov:specializationOf ?id; oco:hasUpdateQuery ?updateQuery.

?id a datacite:Identifier.

FILTER CONTAINS (

?updateQuery, "http://www.essepuntato.it/2010/06/literalreification/hasLiteralValue"

)

}

Listing 4: Example of a direct query on deltas

4. Evaluation and discussion

This section illustrates the quantitative evaluation we

performed on time-agnostic-library through benchmarks

on execution times and memory used by the various func-

tionalities.

Before benchmarking, it was necessary to generate a

dataset compliant with the OpenCitations Data Model

rich in provenance information. As for the dataset content,

the metadata of all the works published by the journal Sci-

entometrics was mapped, having derived that information

entirely from Crossref via its REST API [68]. It contains

4,960,087 data triples and 19,348,027 provenance triples,

which correspond to 1,134,545 entities and 2,696,689 snap-

shots. The code to generate and modify such collections is

available on GitHub [69]. Moreover, the benchmark pro-

cedure is fully reproducible and automated by running a

single bash file [70].

Benchmarks are performed on a variety of triplestores,

i.e., Blazegraph, GraphDB Free Edition, Apache Jena Fuseki,

and OpenLink Virtuoso, and all data is available on Zen-

odo [71].

All the experiments were conducted using a computer

with the following hardware specifications:

• CPU: Intel Core i9 12900K

• RAM: 128 GB DDR4 3200 MHz CL14

• Storage: 1 TB SSD Nvme PCIe 4.0

The benchmarks involve ten use cases: the material-

ization of one or all versions, single-version, single-delta,

cross-version, and cross-delta structured queries contain-

ing three joined triple patterns and, finally, the same types

of searches with one isolated triple pattern, as can be seen

in Listing 5. Regarding queries with joined triple patterns,

they refer to 20 randomly selected entities among those rel-

evant to such queries. These entities have a variable num-

ber of provenance snapshots, ranging from a minimum of

2 to a maximum of 35. They have 20 snapshots on average

with a standard deviation of 8.

Each benchmark on the execution time and RAM was

performed ten times for each entity and each query type

(200 executions for queries on explicit entities, 10 for the

others), while the average and standard deviations were

stored.

All the considered triplestores cache query results mak-

ing the subsequent execution nearly instant. To solve

this problem at its root, we killed each triplestore and

relaunched it before each query since this cache is volatile

and released when the database is closed.

Our cache system and each triplestore textual index

15

Figure 5: Flowchart illustrating the methodology to perform single-time and cross-time structured queries on deltas

were evaluated together and separately to measure their

contribution to enhancing the performances. These ad-

ditional features were not assessed for all the retrieval

functionalities but exclusively for those that benefit from

them. More precisely, the cache is employed only by those

functions that involve reconstructing past graphs. On

the other hand, only processes that require searching for

strings within update queries take advantage of the textual

indexes.

One might wonder why we used a custom benchmark

and not BEAR - the main, if not the only, benchmark for

time-aware datasets [37]. The reason is that BEAR does

not allow experimenting with our methodology’s three most

relevant contributions: the possibility of performing time-

traversal queries via SPARQL live. In fact, it does not

support cross-version (or time-traversal) and cross-delta

queries, does not use SPARQL but AnQL, and does not

consider the cost of indexing the data before launching the

query for those systems that do not operate in real-time.

As a baseline against which to compare results, we

used the query runtime on the latest version regarding the

queries on versions. This information, together with the

number of snapshots involved in each query, reveals the

per-snapshot overhead, i.e., the result of dividing the total

runtime by the number of revisions involved in the query

execution.

16

Query on known subjects

PREFIX literal: <http://www.essepuntato.it/2010/06/literalreification/>

PREFIX cito: <http://purl.org/spar/cito/>

PREFIX datacite: <http://purl.org/spar/datacite/>

SELECT DISTINCT ?br ?id ?value

WHERE {

<entity> cito:cites ?br.

?br datacite:hasIdentifier ?id.

OPTIONAL {?id literal:hasLiteralValue ?value.}

}

Query on unknown subjects

PREFIX datacite: <http://purl.org/spar/datacite/>

SELECT DISTINCT ?s

WHERE {

?s datacite:usesIdentifierScheme datacite:orcid.

}

Listing 5: Benchmarked queries with known and unknown subjects. In the first query, < entity > is a placeholder for

20 different entities

The number of snapshots involved was calculated dif-

ferently depending on the query type. Regarding version

materialization, the number of snapshots is equal to the

number of snapshots of that entity. Conversely, for mate-

rializations of particular versions, the number of snapshots

equals the number of snapshots between the present and

the version to be materialized. The same holds for cross-

version and single-version queries: the snapshots’ number

is equal to the sum of all present and past entities’ snap-

shots involved in the query or just the ones included be-

tween the present and the desired period.

The perspective is reversed for queries on deltas. For

those, the baseline is provided by a query on the snapshots

of the entities currently in the dataset. Therefore, the

overhead is given by the total number of entities involved

in the query, particularly those no longer present in the

dataset that needs to be identified algorithmically.

Table 2 shows – in seconds – the mean and standard

deviation of the time spent to complete the various opera-

tions on Blazegraph, GraphDB Free Edition, Fuseki, and

Virtuoso, with and without the cache and the textual in-

dex. The values are reported with three significant figures.

By looking at the results, it can be observed that time-

agnostic-library expresses the best performances for queries

on known subjects. Materializing all versions took an av-

erage of 0.213s seconds on Fuseki, while a specific snapshot

0.165s seconds, with an average per-snapshot overhead of

0,0107s and 0,0211s. Conversely, on average on Fuseki, the

SPARQL query on all versions took 13.5s (with 792 snap-

shots involved on average), on versions within a given pe-

riod 1.62s seconds (15.9 updates on average), on all deltas

14.6s seconds (with 162 entities involved), and on deltas

within a limited interval 2.82s seconds (for 49.2 entities).

However, such speeds are only possible if the subject

is known. If it is unknown, all present and past entities

relevant to explicated predicates and objects must be con-

sidered, requiring much more time. For cross-version and

single-version queries, it was necessary to identify and pro-

17

cess 11,928 snapshots, taking 381s and 285s on average on

Fuseki, while for cross-delta and single-delta queries 7642

entities solved the input query, requiring 235s and 188s on

average to answer the question.

Indeed, the cache system and the textual index were

implemented to reduce these timeframes as much as pos-

sible. The index alone had a marginal impact by reduc-

ing the execution of all queries up to 10 seconds, while

the cache had a more significant effect, cutting alone more

than half of all runtimes. Finally, combining the textual in-

dex and the cache made the results predictably the fastest

in the series.

However, it is essential to highlight a drawback result-

ing from the cache’s adoption: it improves the times only

from the second execution of a given query onwards. The

first time, it worsens them, involving additional write oper-

ations on the cache triplestore, as can be observed by the

high standard deviation. Nevertheless, the cache always

has advantages in terms of RAM, as explained below.

Table 3 shows the average RAM used by the various

functionalities measured in Megabyte with three signifi-

cant figures, first without and then with the cache. All

operations required less than a gigabyte. The minimum

was about 33 MB for materializing single versions. Con-

versely, the peak was about 700 MB regarding the time-

traversal query with an unknown subject. Instead, the

same function performed over a limited interval required

up to a fourth of the memory on Blazegraph. It can be

inferred that if the available RAM is insufficient, defin-

ing a period of interest helps to reduce dramatically the

resources needed to answer the research.

A valid alternative to decrease RAM consumption is

to use the cache system, which improves all benchmarks

and cuts in a half the memory needed for time-traversal

queries with isolated triple patterns. Furthermore, if the

restored graphs are millions, depending on the available

RAM, caching them becomes the only viable option to

complete the query and avoid a crash. Additionally, even

if the PC resources were sufficient, the time necessary to

answer the user’s query on all the past states of the dataset

stored in RAM would increase exponentially with the enti-

ties involved. At the same time, a triplestore implements

optimizations that allow completing this final step in a

scalable way. Though, it should be noted that the cache

occupies disk space. At the end of all benchmarks, the

cache contains 45 dataset versions in which 10,291 enti-

ties were reconstructed, totalling 691,799 quadruples. The

weight varies depending on the triplestore and is 209.7

MB for Blazegraph, 128.3 MB for GraphDB, 405.8 MB

for Fuseki, and 82,1 MB for Virtuoso.

5. Conclusion

This article introduced a methodology to conduct live

time-traversal queries on RDF datasets and software devel-

oped in Python implementing it. We adopted the OpenCi-

tations Data Model to handle provenance and change track-

ing, which introduces a document-inspired system that

stores the delta between two versions of an entity, saving

the diff in a separate named graph as a SPARQL update

string associated with the property oco:hasUpdateQuery.

Then, by analyzing existing solutions to run time-traversal

queries on RDF datasets with the taxonomy by Fernández

et al. [37], three requirements were established: first, all

retrieval functionalities needed to be enabled; second, they

had to be completed live; third, queries had to be expressed

in standard SPARQL.

As far as we know, time-agnostic-library is, to date,

the only one that allows performing all the time-related

retrieval functionalities live via SPARQL. In addition, this

software can be used for any dataset that tracks changes

and provenance as described in the OCDM.

Future works include supporting all property paths in

time-agnostic-library. Currently, the software only allows

the inverse property path to be used. In addition, we plan

to improve and extend the library’s code to increase the

performance of all the operations it enables, particularly

18

R
e
tr
ie
v
a
l
fu
n
c
ti
o
n
a
li
ty

T
ri
p
le
st
o
re

w
/
o
u
t
c
a
ch

e

w
/
o
u
t
in
d
e
x

w
/
o
u
t
c
a
ch

e

w
/
in
d
e
x

w
/
c
a
ch

e

w
/
o
u
t
in
d
e
x

w
/
c
a
ch

e

w
/
in
d
e
x

S
n
a
p
sh

o
ts

in
v
o
lv
e
d

in
th

e
q
u
e
ry

Q
u
e
ry

ru
n
ti
m
e
o
n

th
e
la
te
st

sn
a
p
sh

o
t

m
e
a
n

st
d
e
v

m
e
a
n

p
e
r
sn

a
p
h
o
t

o
v
e
rh

e
a
d

m
e
a
n

st
d
e
v

m
e
a
n

p
e
r
sn

a
p
h
o
t

o
v
e
rh

e
a
d

m
e
a
n

st
d
e
v

m
e
a
n

p
e
r
sn

a
p
h
o
t

o
v
e
rh

e
a
d

m
e
a
n

st
d
e
v

m
e
a
n

p
e
r
sn

a
p
h
o
t

o
v
e
rh

e
a
d

m
e
a
n

st
d
e
v

m
e
a
n

st
d
e
v

1
.
M
at
er
ia
li
za
ti
o
n

o
f
a
ll
ve
rs
io
n
s

B
la
z
e
g
ra

p
h

0
.3
14
s

0
.0
6
2
2s

0
.0
1
5
8s

1
9.
9

8
.3
6

0
.1
5
8s

0
.0
0
7
8
4s

G
ra

p
h
D
B

1
.7
4s

0
.0
7
1
5s

0
.0
8
7
9s

1
9.
9

8
.3
6

1
.6
1
s

0
.0
3
2
5
s

F
u
se
k
i

0
.2
13
s

0
.0
6
1
5s

0
.0
1
0
7s

1
9.
9

8
.3
6

0
.0
8
40
s

0
.0
0
7
0
7s

V
ir
tu

o
so

0
.5
49
s

0
.0
6
3
7s

0
.0
2
7
7s

1
9.
9

8
.3
6

0
.0
3
10
s

0
.0
0
5
4
4s

2
.
M
at
er
ia
li
za
ti
o
n

o
f
a
si
n
g
le
-v
er
si
on

B
la
z
e
g
ra

p
h

0
.2
70
s

0
.0
3
4
4s

0
.0
3
4
6s

7
.8
0

3
.9
6

0
.1
5
7s

0
.0
0
7
6
0s

G
ra

p
h
D
B

1
.7
7s

0
.0
4
8
3s

0
.2
2
7
s

7
.8
0

3
.9
6

1
.6
8
s

0
.0
3
3
6
s

F
u
se
k
i

0
.1
65
s

0
.0
3
1
3s

0
.0
2
1
1s

7
.8
0

3
.9
6

0
.0
8
38
s

0
.0
0
7
1
6s

V
ir
tu

o
so

0
.6
61
s

0
.0
3
4
4s

0
.0
8
4
7s

7
.8
0

3
.9
6

0
.0
3
11
s

0
.0
0
5
2
1s

3
.
C
ro
ss
-v
er
si
o
n

st
ru
ct
u
re
d
q
u
er
y
S
P
?

B
la
z
e
g
ra

p
h

1
6
.5
s

8
.3
6
s

0.
0
21
4
s

1
3
.6
s

1
1.
6
s

0
.0
1
77
s

7
9
2

45
3

0.
1
6
8s

0
.0
1
16
s

G
ra

p
h
D
B

1
4
.5
s

6
.7
5
s

0.
0
18
4
s

1
3
.2
s

1
5.
1
s

0
.0
1
67
s

7
9
2

45
3

1.
7
1
s

0
.0
2
37
s

F
u
se
k
i

1
3
.5
s

7
.1
7
s

0.
0
17
1
s

1
9
.7
s

3
9.
1
s

0
.0
2
48
s

7
9
2

45
3

0.
0
8
61
s

0
.0
0
81
4
s

V
ir
tu

o
so

1
5
.9
s

8
.1
0
s

0.
0
20
1
s

9
.6
2
s

7
.8
3
s

0
.0
1
21
s

7
9
2

45
3

0.
1
0
9s

0
.0
0
46
3
s

4
.
S
in
gl
e-
v
er
si
o
n

st
ru
ct
u
re
d
q
u
er
y
S
P
?

B
la
z
e
g
ra

p
h

2
.0
6s

1
.1
4
s

0.
1
29
s

1
.2
0
s

0
.9
5
0s

0
.0
75
6
s

1
5
.9

1
0.
8

0.
1
6
8s

0.
0
1
34
s

G
ra

p
h
D
B

3
.2
2s

0
.9
0
0
s

0.
2
03
s

1
.9
1
s

0
.9
5
9s

0
.1
20
s

1
5
.9

1
0.
8

1.
7
4
s

0.
0
2
28
s

F
u
se
k
i

1
.6
2s

0
.9
2
5
s

0.
1
02
s

0
.7
5
1
s

1
.1
3
s

0
.0
4
72
s

1
5
.9

1
0.
8

0.
0
8
51
s

0.
0
0
75
8
s

V
ir
tu

o
so

2
.1
2s

0
.9
5
3
s

0.
1
33
s

0
.6
6
0
s

0
.7
5
1s

0
.0
41
5
s

1
5
.9

1
0.
8

0.
1
0
9s

0.
0
0
44
1
s

5
.
C
ro
ss
-v
er
si
o
n

st
ru
ct
u
re
d
q
u
er
y
?P

O

B
la
z
e
g
ra

p
h

3
8
3s

3
.9
5
s

0.
0
32
1
s

37
6
s

1.
64
s

0.
03
15
s

9
0
.6
s

6
5.
0s

0
.0
0
75
9
s

8
4
.2
s

67
.1
s

0.
0
0
70
6
s

1
1
92
8

0
.2
4
6
s

0
.0
2
5
9s

G
ra

p
h
D
B

3
7
5s

2
.3
0
s

0.
0
31
4
s

36
8
s

12
.1
s

0.
03
08
s

1
1
1s

16
4
s

0
.0
0
93
2
s

1
0
7s

1
57
s

0
.0
08
9
6s

1
1
92
8

1.
7
9
s

0.
0
3
32
s

F
u
se
k
i

3
8
1s

2
.2
2
s

0.
0
32
0
s

37
3
s

2.
64
s

0.
03
13
s

1
5
4s

29
7
s

0
.0
1
29
s

1
4
0s

2
85
s

0
.0
11
8
s

1
1
92
8

0.
1
9
3s

0.
0
1
16
s

V
ir
tu

o
so

3
8
5s

2
.2
6
s

0.
0
32
3
s

37
8
s

3.
71
s

0.
03
17
s

9
5
.4
s

1
22
s

0
.0
0
80
0
s

8
0
.4
s

10
2s

0.
0
0
67
4
s

1
1
92
8

0.
0
9
71
s

0
.0
0
33
4
s

6
.
S
in
gl
e-
v
er
si
o
n

st
ru
ct
u
re
d
q
u
er
y
?P

O

B
la
z
e
g
ra

p
h

2
5
2s

2
.9
2
s

0.
0
44
7
s

24
2
s

1.
24
s

0.
04
28
s

1
0
6s

87
.7
s

0
.0
1
87
s

9
7
.7
s

85
.6
s

0.
0
1
73
s

5
6
51

0
.2
2
8
s

0
.0
1
3
0
s

G
ra

p
h
D
B

2
3
1s

1
.4
7
s

0.
0
40
9
s

23
0
s

3.
01
s

0.
04
07
s

9
9
.3
s

9
2.
9s

0
.0
1
76
s

9
5
.8
s

88
.3
s

0.
0
1
70
s

5
6
51

1.
7
8
s

0.
0
1
68
s

F
u
se
k
i

2
3
5s

1
.8
1
s

0.
0
41
6
s

22
9
s

1.
64
s

0.
04
05
s

1
1
7s

14
7
s

0
.0
2
08
s

1
0
9s

1
47
s

0
.0
19
3
s

5
6
51

0
.2
04
s

0.
0
13
5
s

V
ir
tu

o
so

2
5
1s

1
.4
5
s

0.
0
44
4
s

24
6
s

2.
34
s

0.
04
36
s

8
3
.5
s

8
1.
9s

0
.0
1
48
s

9
6
.8
s

74
.3
s

0.
0
1
71
s

5
6
51

0.
1
0
2s

0.
0
0
36
2
s

7
.
C
ro
ss
-d
el
ta

st
ru
ct
u
re
d
q
u
er
y
S
P
?

B
la
z
e
g
ra

p
h

1
7
.9
s

9
.1
9
s

0.
1
10
s

1
62

8
6
.5

0
.1
8
9
s

0
.0
1
7
7s

G
ra

p
h
D
B

1
5
.4
s

7
.1
1
s

0.
0
95
1
s

1
62

8
6
.5

1
.7
9
s

0
.0
2
9
6s

F
u
se
k
i

1
4
.6
s

7
.8
0
s

0.
0
90
3
s

1
62

8
6
.5

0
.1
0
8
s

0
.0
1
6
9s

V
ir
tu

o
so

1
7
.8
s

9
.0
7
s

0.
1
10
s

1
62

8
6
.5

0
.4
7
4
s

0
.0
0
9
23
s

8
.
S
in
gl
e-
d
el
ta

st
ru
ct
u
re
d
q
u
er
y
S
P
?

B
la
z
e
g
ra

p
h

3
.3
1s

1
.9
3
s

0.
0
67
3
s

4
9.
1

3
0
.2

0
.1
8
8s

0
.0
1
8
9
s

G
ra

p
h
D
B

4
.4
4s

1
.6
4
s

0.
0
90
4
s

4
9.
1

3
0
.2

1
.8
0
s

0
.0
2
5
7
s

F
u
se
k
i

2
.8
2s

1
.7
1
s

0.
0
57
4
s

4
9.
1

3
0
.2

0
.1
0
8s

0
.0
1
8
1
s

V
ir
tu

o
so

4
.0
4s

1
.8
8
s

0.
0
82
3
s

4
9.
1

3
0
.2

0
.4
7
4s

0
.0
0
8
6
9s

9
.
C
ro
ss
-d
el
ta

st
ru
ct
u
re
d
q
u
er
y
?P

O

B
la
z
e
g
ra

p
h

2
2
5s

5
.9
1
s

0.
0
29
5
s

21
8
s

5.
15
s

0.
02
85
s

7
64
2

0
.3
3
2
s

0
.0
2
5
7s

G
ra

p
h
D
B

2
0
6s

1
.2
2
s

0.
0
27
0
s

20
4
s

1.
51
s

0.
02
66
s

7
64
2

1
.8
4
s

0
.0
3
0
1s

F
u
se
k
i

2
0
8s

3
.4
6
s

0.
0
27
2
s

20
5
s

3.
62
s

0.
02
68
s

7
64
2

0
.1
8
9
s

0
.0
0
7
93
s

V
ir
tu

o
so

2
3
5s

1
.8
9
s

0.
0
30
8
s

21
4
s

16
.9
s

0.
02
79
s

7
64
2

0
.4
4
5
s

0
.0
1
1
3s

1
0.

S
in
g
le
-d
el
ta

st
ru
ct
u
re
d
q
u
er
y
?P

O

B
la
z
e
g
ra

p
h

2
0
3s

1
.1
7
s

0.
0
26
6
s

19
5
s

1.
43
s

0.
02
55
s

7
64
2

0
.3
4
0
s

0
.0
3
0
6s

G
ra

p
h
D
B

1
8
9s

2
.6
4
s

0.
0
24
8
s

18
0
s

1.
38
s

0.
02
36
s

7
64
2

1
.8
5
s

0
.0
2
8
0s

F
u
se
k
i

1
8
8s

1
.9
7
s

0.
0
24
6
s

17
9
s

2.
55
s

0.
02
34
s

7
64
2

0
.2
0
0
s

0
.0
2
1
4s

V
ir
tu

o
so

2
0
7s

1
0.
8
s

0.
0
27
0
s

19
8
s

3.
90
s

0.
02
59
s

7
64
2

0
.4
5
3
s

0
.0
0
6
65
s

T
a
b
le

2
:
M
ea

n
ti
m
e
in

se
co

n
d
s
sp

en
t
to

co
m
p
le
te

th
e
v
a
ri
o
u
s
o
p
er
a
ti
o
n
s
o
n
B
la
ze
g
ra
p
h
,
G
ra
p
h
D
B

F
re
e
E
d
it
io
n
,
F
u
se
k
i,
a
n
d
V
ir
tu

o
so
,
w
it
h
a
n
d
w
it
h
o
u
t
th

e
ca

ch
e
a
n
d
th

e
te
x
tu

a
l
in
d
ex

.

T
h
e
v
a
lu
es

a
re

re
p
o
rt
ed

w
it
h
th

re
e
si
g
n
ifi
ca

n
t
fi
g
u
re
s

19

Retrieval functionality Triplestore

w/out cache

w/out index

w/ cache

w/out index

mean stdev mean stdev

1. Materialization of all versions

Blazegraph 43.0MB 7.29MB

GraphDB 42.9MB 7.23MB

Fuseki 43.1MB 7.21MB

Virtuoso 43.1MB 7.23MB

2. Materialization of a single-version

Blazegraph 33.2MB 0.546MB

GraphDB 33.2MB 0.543MB

Fuseki 33.4MB 0.536MB

Virtuoso 33.4MB 0.570MB

3. Cross-version structured query

SP?

Blazegraph 244MB 129MB 153MB 79.1MB

GraphDB 245MB 126MB 154MB 79.1MB

Fuseki 244MB 127MB 155MB 78.1MB

Virtuoso 248MB 127MB 101MB 71.8MB

4. Single-version structured query

SP?

Blazegraph 45.9MB 6.54MB 35.4MB 1.78MB

GraphDB 46.4MB 6.70MB 35.4MB 1.78MB

Fuseki 46.3MB 6.64MB 35.4MB 1.76MB

Virtuoso 46.5MB 6.76MB 36.7MB 4.46MB

5. Cross-version structured query

?PO

Blazegraph 707MB 100MB 300MB 129MB

GraphDB 677MB 44.8MB 304MB 127MB

Fuseki 665MB 7.99MB 303MB 127MB

Virtuoso 662MB 6.08MB 299MB 117MB

6. Single-version structured query

?PO

Blazegraph 181MB 1.35MB 147MB 14.9MB

GraphDB 186MB 1.83MB 148MB 15.3MB

Fuseki 185MB 3.31MB 149MB 15.8MB

Virtuoso 185MB 0.440MB 161MB 22.3MB

7. Cross-delta structured query

SP?

Blazegraph 247MB 129MB

GraphDB 239MB 128MB

Fuseki 244MB 128MB

Virtuoso 247MB 128MB

8. Single-delta structured query

SP?

Blazegraph 49.1MB 7.23MB

GraphDB 49.5MB 7.33MB

Fuseki 49.4MB 7.31MB

Virtuoso 49.8MB 7.40MB

9. Cross-delta structured query

?PO

Blazegraph 73.3MB 0.261MB

GraphDB 74.3MB 0.206MB

Fuseki 74.3MB 0.144MB

Virtuoso 74.2MB 0.224MB

10. Single-delta structured query

?PO

Blazegraph 71.7MB 0.301MB

GraphDB 72.9MB 0.250MB

Fuseki 72.9MB 0.322MB

Virtuoso 72.8MB 0.232MB

Table 3: Mean RAM used by the various functionalities measured in Megabyte, first without and then with the cache. The data are reported

with three significant figures

in running structured queries involving isolated triple pat-

terns.

Finally, we aim to use time-agnostic-library to address

specific needs derived from OpenCitations’ use cases. These

include a system to enable users to understand how and

why an entity was modified in time and involve domain

20

experts in the curatorship of data while keeping track of

the changes and their responsible agents.

Acknowledgements

This work has been partially funded by the European

Union’s Horizon 2020 research and innovation program

under grant agreement No 101017452 (OpenAIRE-Nexus

Project). We want to thank the responsible editor of

the previous version of this article (available at https:

//doi.org/10.48550/arXiv.2210.02534 and submit-

ted initially to the Semantic Web Journal), Katja Hose,

Ruben Taelman, and all the other anonymous reviewers of

that version for their tremendous contribution to the im-

provement of this article. Their open reviews are available

at https://www.semantic-web-journal.net/content

/performing-live-time-traversal-queries-rdf-d

atasets. Our rebuttal letter to their comments, which

we have addressed in the present version, is available at

https://doi.org/10.5281/zenodo.7162279. We want

to thank Fabio Vitali for the constructive feedback, and

Simone Persiani, for the valuable guidance throughout the

use of the Python library oc ocdm. We also thank Silvia

Di Pietro for the language editing and proofreading

References

[1] S. Garfinkel, Wikipedia and the Meaning of Truth, MIT Tech-

nology Review (2008).

URL https://stephencodrington.com/Blogs/Hong_Kong_Blog

/Entries/2009/4/11_What_is_Truth_files/Wikipedia%20and

%20the%20Meaning%20of%20Truth.pdf

[2] M.-R. Koivunen, E. Miller, Semantic Web Activity, edition:

W3C Volume: 11 02 (Nov. 2001).

URL https://www.w3.org/2001/12/semweb-fin/w3csw

[3] T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne,

A. Hogan, Observing Linked Data Dynamics, in: D. Hutchi-

son, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.

Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,

M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,

P. Cimiano, O. Corcho, V. Presutti, L. Hollink, S. Rudolph

(Eds.), The Semantic Web: Semantics and Big Data, Vol.

7882, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,

pp. 213–227, series Title: Lecture Notes in Computer Science.

doi:10.1007/978-3-642-38288-8_15.

[4] F. Orlandi, A. Passant, Modelling provenance of DBpedia re-

sources using Wikipedia contributions, Journal of Web Seman-

tics 9 (2) (2011) 149–164. doi:10.1016/j.websem.2011.03.002.

URL https://linkinghub.elsevier.com/retrieve/pii/S1570

826811000175

[5] P. Dooley, B. Božić, Towards Linked Data for Wikidata Revi-

sions and Twitter Trending Hashtags, in: Proceedings of the

21st International Conference on Information Integration and

Web-based Applications & Services, ACM, Munich Germany,

2019, pp. 166–175. doi:10.1145/3366030.3366048.

URL https://dl.acm.org/doi/10.1145/3366030.3366048

[6] Y. Project, Download data, code, and logo of Yago projects

(2021).

URL https://yago-knowledge.org/downloads

[7] J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres, S. Decker,

Towards Dataset Dynamics: Change Frequency of Linked

Open Data Sources, in: C. Bizer, T. Heath, T. Berners-Lee,

M. Hausenblas (Eds.), Proceedings of the WWW2010 Work-

shop on Linked Data on the Web, CEUR Workshop Proceed-

ings, Raleigh, USA, 2010, pp. 73–81.

URL http://ceur-ws.org/Vol-628/ldow2010_paper12.pdf

[8] J. J. Carroll, C. Bizer, P. Hayes, P. Stickler, Named graphs,

provenance and trust, in: Proceedings of the 14th interna-

tional conference on World Wide Web - WWW ’05, ACM Press,

Chiba, Japan, 2005, p. 613. doi:10.1145/1060745.1060835.

URL http://portal.acm.org/citation.cfm?doid=1060745.1

060835

[9] P. Pediaditis, G. Flouris, I. Fundulaki, V. Christophides, On

Explicit Provenance Management in RDF/S Graphs, in: First

Workshop on the Theory and Practice of Provenance, USENIX,

San Francisco, CA, USA, 2009, pp. 1–10.

URL https://www.usenix.org/legacy/event/tapp09/tech/fu

ll_papers/pediaditis/pediaditis.pdf

[10] G. Flouris, I. Fundulaki, P. Pediaditis, Y. Theoharis,

V. Christophides, Coloring RDF Triples to Capture Prove-

nance, in: D. Hutchison, T. Kanade, J. Kittler, J. M. Klein-

berg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,

C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos,

D. Tygar, M. Y. Vardi, G. Weikum, A. Bernstein, D. R.

Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta,

K. Thirunarayan (Eds.), The Semantic Web - ISWC 2009,

Vol. 5823, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009,

pp. 196–212, series Title: Lecture Notes in Computer Science.

doi:10.1007/978-3-642-04930-9_13.

URL http://link.springer.com/10.1007/978-3-642-04930

21

https://doi.org/10.48550/arXiv.2210.02534
https://doi.org/10.48550/arXiv.2210.02534
https://www.semantic-web-journal.net/content/performing-live-time-traversal-queries-rdf-datasets
https://www.semantic-web-journal.net/content/performing-live-time-traversal-queries-rdf-datasets
https://www.semantic-web-journal.net/content/performing-live-time-traversal-queries-rdf-datasets
https://doi.org/10.5281/zenodo.7162279
https://stephencodrington.com/Blogs/Hong_Kong_Blog/Entries/2009/4/11_What_is_Truth_files/Wikipedia%20and%20the%20Meaning%20of%20Truth.pdf
https://stephencodrington.com/Blogs/Hong_Kong_Blog/Entries/2009/4/11_What_is_Truth_files/Wikipedia%20and%20the%20Meaning%20of%20Truth.pdf
https://stephencodrington.com/Blogs/Hong_Kong_Blog/Entries/2009/4/11_What_is_Truth_files/Wikipedia%20and%20the%20Meaning%20of%20Truth.pdf
https://stephencodrington.com/Blogs/Hong_Kong_Blog/Entries/2009/4/11_What_is_Truth_files/Wikipedia%20and%20the%20Meaning%20of%20Truth.pdf
https://www.w3.org/2001/12/semweb-fin/w3csw
https://www.w3.org/2001/12/semweb-fin/w3csw
https://doi.org/10.1007/978-3-642-38288-8_15
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000175
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000175
https://doi.org/10.1016/j.websem.2011.03.002
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000175
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000175
https://dl.acm.org/doi/10.1145/3366030.3366048
https://dl.acm.org/doi/10.1145/3366030.3366048
https://doi.org/10.1145/3366030.3366048
https://dl.acm.org/doi/10.1145/3366030.3366048
https://yago-knowledge.org/downloads
https://yago-knowledge.org/downloads
http://ceur-ws.org/Vol-628/ldow2010_paper12.pdf
http://ceur-ws.org/Vol-628/ldow2010_paper12.pdf
http://ceur-ws.org/Vol-628/ldow2010_paper12.pdf
http://portal.acm.org/citation.cfm?doid=1060745.1060835
http://portal.acm.org/citation.cfm?doid=1060745.1060835
https://doi.org/10.1145/1060745.1060835
http://portal.acm.org/citation.cfm?doid=1060745.1060835
http://portal.acm.org/citation.cfm?doid=1060745.1060835
https://www.usenix.org/legacy/event/tapp09/tech/full_papers/pediaditis/pediaditis.pdf
https://www.usenix.org/legacy/event/tapp09/tech/full_papers/pediaditis/pediaditis.pdf
https://www.usenix.org/legacy/event/tapp09/tech/full_papers/pediaditis/pediaditis.pdf
https://www.usenix.org/legacy/event/tapp09/tech/full_papers/pediaditis/pediaditis.pdf
http://link.springer.com/10.1007/978-3-642-04930-9_13
http://link.springer.com/10.1007/978-3-642-04930-9_13
https://doi.org/10.1007/978-3-642-04930-9_13
http://link.springer.com/10.1007/978-3-642-04930-9_13

-9_13

[11] T. Berners-Lee, Notation 3 Logic (Aug. 2005).

URL https://www.w3.org/DesignIssues/N3Logic

[12] R. Dividino, S. Sizov, S. Staab, B. Schueler, Querying for

provenance, trust, uncertainty and other meta knowledge in

RDF, Journal of Web Semantics 7 (3) (2009) 204–219. doi:

10.1016/j.websem.2009.07.004.

URL https://linkinghub.elsevier.com/retrieve/pii/S1570

826809000237

[13] A. Zimmermann, N. Lopes, A. Polleres, U. Straccia, A general

framework for representing, reasoning and querying with anno-

tated Semantic Web data, Journal of Web Semantics 11 (2012)

72–95. doi:10.1016/j.websem.2011.08.006.

URL https://linkinghub.elsevier.com/retrieve/pii/S1570

826811000771

[14] J. Hoffart, F. M. Suchanek, K. Berberich, G. Weikum, YAGO2:

A spatially and temporally enhanced knowledge base from

Wikipedia, Artificial Intelligence 194 (2013) 28–61. doi:10.101

6/j.artint.2012.06.001.

URL https://linkinghub.elsevier.com/retrieve/pii/S0004

370212000719

[15] O. Hartig, B. Thompson, Foundations of an Alternative Ap-

proach to Reification in RDF, arXiv:1406.3399 [cs]ArXiv:

1406.3399 (Mar. 2019).

URL http://arxiv.org/abs/1406.3399

[16] S. S. Sahoo, O. Bodenreider, P. Hitzler, A. Sheth,

K. Thirunarayan, Provenance Context Entity (PaCE): Scalable

Provenance Tracking for Scientific RDF Data, in: D. Hutchi-

son, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,

J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,

B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,

G. Weikum, M. Gertz, B. Ludäscher (Eds.), Scientific and Sta-

tistical Database Management, Vol. 6187, Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2010, pp. 461–470, series Title: Lec-

ture Notes in Computer Science. doi:10.1007/978-3-642-138

18-8_32.

[17] V. Nguyen, O. Bodenreider, A. Sheth, Don’t like RDF reifi-

cation?: making statements about statements using singleton

property, in: Proceedings of the 23rd international conference

on World wide web - WWW ’14, ACM Press, Seoul, Korea,

2014, pp. 759–770. doi:10.1145/2566486.2567973.

URL http://dl.acm.org/citation.cfm?doid=2566486.25679

73

[18] E. Damiani, B. Oliboni, E. Quintarelli, L. Tanca, A graph-

based meta-model for heterogeneous data management, Knowl-

edge and Information Systems 61 (1) (2019) 107–136. doi:

10.1007/s10115-018-1305-8.

URL http://link.springer.com/10.1007/s10115-018-130

5-8

[19] F. M. Suchanek, J. Lajus, A. Boschin, G. Weikum, Knowledge

Representation and Rule Mining in Entity-Centric Knowledge

Bases, in: M. Krötzsch, D. Stepanova (Eds.), Reasoning Web.

Explainable Artificial Intelligence, Vol. 11810, Springer Interna-

tional Publishing, Cham, 2019, pp. 110–152, series Title: Lec-

ture Notes in Computer Science. doi:10.1007/978-3-030-314

23-1_4.

URL http://link.springer.com/10.1007/978-3-030-31423

-1_4

[20] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth,

N. Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale,

Y. Simmhan, E. Stephan, J. V. den Bussche, The Open Prove-

nance Model core specification (v1.1), Future Generation Com-

puter Systems 27 (6) (2011) 743–756. doi:10.1016/j.future

.2010.07.005.

URL https://linkinghub.elsevier.com/retrieve/pii/S0167

739X10001275

[21] P. P. da Silva, D. L. McGuinness, R. Fikes, A proof markup

language for Semantic Web services, Information Systems 31 (4-

5) (2006) 381–395. doi:10.1016/j.is.2005.02.003.

URL https://linkinghub.elsevier.com/retrieve/pii/S0306

437905000281

[22] T. Lebo, S. Sahoo, D. McGuinness, PROV-O: The PROV On-

tology, place: PROV-O Volume: 04 30 (Apr. 2013).

URL http://www.w3.org/TR/2013/REC-prov-o-20130430/

[23] S. S. Sahoo, A. P. Sheth, Provenir Ontology: Towards a Frame-

work for eScience Provenance Management (Oct. 2009).

URL https://corescholar.libraries.wright.edu/knoesis/8

0

[24] P. Caplan, Understanding PREMIS: an overview of the

PREMIS Data Dictionary for Preservation Metadata (2017).

URL https://www.loc.gov/standards/premis/understanding

-premis-rev2017.pdf

[25] P. Ciccarese, E. Wu, G. Wong, M. Ocana, J. Kinoshita, A. Rut-

tenberg, T. Clark, The SWAN biomedical discourse ontology,

Journal of Biomedical Informatics 41 (5) (2008) 739–751. doi:

10.1016/j.jbi.2008.04.010.

URL https://linkinghub.elsevier.com/retrieve/pii/S1532

046408000580

[26] D. U. Board, DCMI Metadata Terms (Jan. 2020).

URL http://dublincore.org/specifications/dublin-core/

dcmi-terms/2020-01-20/

[27] D.-H. Im, S.-W. Lee, H.-J. Kim, A Version Management Frame-

work for RDF Triple Stores, International Journal of Software

Engineering and Knowledge Engineering 22 (01) (2012) 85–106.

doi:10.1142/S0218194012500040.

URL https://www.worldscientific.com/doi/abs/10.1142/S0

22

http://link.springer.com/10.1007/978-3-642-04930-9_13
https://www.w3.org/DesignIssues/N3Logic
https://www.w3.org/DesignIssues/N3Logic
https://linkinghub.elsevier.com/retrieve/pii/S1570826809000237
https://linkinghub.elsevier.com/retrieve/pii/S1570826809000237
https://linkinghub.elsevier.com/retrieve/pii/S1570826809000237
https://doi.org/10.1016/j.websem.2009.07.004
https://doi.org/10.1016/j.websem.2009.07.004
https://linkinghub.elsevier.com/retrieve/pii/S1570826809000237
https://linkinghub.elsevier.com/retrieve/pii/S1570826809000237
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000771
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000771
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000771
https://doi.org/10.1016/j.websem.2011.08.006
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000771
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000771
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000719
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000719
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000719
https://doi.org/10.1016/j.artint.2012.06.001
https://doi.org/10.1016/j.artint.2012.06.001
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000719
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000719
http://arxiv.org/abs/1406.3399
http://arxiv.org/abs/1406.3399
http://arxiv.org/abs/1406.3399
https://doi.org/10.1007/978-3-642-13818-8_32
https://doi.org/10.1007/978-3-642-13818-8_32
http://dl.acm.org/citation.cfm?doid=2566486.2567973
http://dl.acm.org/citation.cfm?doid=2566486.2567973
http://dl.acm.org/citation.cfm?doid=2566486.2567973
https://doi.org/10.1145/2566486.2567973
http://dl.acm.org/citation.cfm?doid=2566486.2567973
http://dl.acm.org/citation.cfm?doid=2566486.2567973
http://link.springer.com/10.1007/s10115-018-1305-8
http://link.springer.com/10.1007/s10115-018-1305-8
https://doi.org/10.1007/s10115-018-1305-8
https://doi.org/10.1007/s10115-018-1305-8
http://link.springer.com/10.1007/s10115-018-1305-8
http://link.springer.com/10.1007/s10115-018-1305-8
http://link.springer.com/10.1007/978-3-030-31423-1_4
http://link.springer.com/10.1007/978-3-030-31423-1_4
http://link.springer.com/10.1007/978-3-030-31423-1_4
https://doi.org/10.1007/978-3-030-31423-1_4
https://doi.org/10.1007/978-3-030-31423-1_4
http://link.springer.com/10.1007/978-3-030-31423-1_4
http://link.springer.com/10.1007/978-3-030-31423-1_4
https://linkinghub.elsevier.com/retrieve/pii/S0167739X10001275
https://linkinghub.elsevier.com/retrieve/pii/S0167739X10001275
https://doi.org/10.1016/j.future.2010.07.005
https://doi.org/10.1016/j.future.2010.07.005
https://linkinghub.elsevier.com/retrieve/pii/S0167739X10001275
https://linkinghub.elsevier.com/retrieve/pii/S0167739X10001275
https://linkinghub.elsevier.com/retrieve/pii/S0306437905000281
https://linkinghub.elsevier.com/retrieve/pii/S0306437905000281
https://doi.org/10.1016/j.is.2005.02.003
https://linkinghub.elsevier.com/retrieve/pii/S0306437905000281
https://linkinghub.elsevier.com/retrieve/pii/S0306437905000281
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
https://corescholar.libraries.wright.edu/knoesis/80
https://corescholar.libraries.wright.edu/knoesis/80
https://corescholar.libraries.wright.edu/knoesis/80
https://corescholar.libraries.wright.edu/knoesis/80
https://www.loc.gov/standards/premis/understanding-premis-rev2017.pdf
https://www.loc.gov/standards/premis/understanding-premis-rev2017.pdf
https://www.loc.gov/standards/premis/understanding-premis-rev2017.pdf
https://www.loc.gov/standards/premis/understanding-premis-rev2017.pdf
https://linkinghub.elsevier.com/retrieve/pii/S1532046408000580
https://doi.org/10.1016/j.jbi.2008.04.010
https://doi.org/10.1016/j.jbi.2008.04.010
https://linkinghub.elsevier.com/retrieve/pii/S1532046408000580
https://linkinghub.elsevier.com/retrieve/pii/S1532046408000580
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20/
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20/
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20/
https://www.worldscientific.com/doi/abs/10.1142/S0218194012500040
https://www.worldscientific.com/doi/abs/10.1142/S0218194012500040
https://doi.org/10.1142/S0218194012500040
https://www.worldscientific.com/doi/abs/10.1142/S0218194012500040

218194012500040

[28] T. Neumann, G. Weikum, x-RDF-3X: Fast Querying, High Up-

date Rates, and Consistency for RDF Databases, Proceedings

of the VLDB Endowment 3 (2010) 256–263.

[29] A. Cerdeira-Pena, A. Farina, J. D. Fernandez, M. A. Martinez-

Prieto, Self-Indexing RDF Archives, in: 2016 Data Compression

Conference (DCC), IEEE, Snowbird, UT, USA, 2016, pp. 526–

535. doi:10.1109/DCC.2016.40.

URL http://ieeexplore.ieee.org/document/7786197/

[30] R. Taelman, M. Vander Sande, J. Van Herwegen, E. Mannens,

R. Verborgh, Triple storage for random-access versioned query-

ing of rdf archives, Journal of Web Semantics 54 (2019) 4–28.

doi:https://doi.org/10.1016/j.websem.2018.08.001.

[31] T. Pellissier Tanon, F. Suchanek, Querying the Edit His-

tory of Wikidata, in: P. Hitzler, S. Kirrane, O. Hartig,

V. de Boer, M.-E. Vidal, M. Maleshkova, S. Schlobach, K. Ham-

mar, N. Lasierra, S. Stadtmüller, K. Hose, R. Verborgh (Eds.),

The Semantic Web: ESWC 2019 Satellite Events, Vol. 11762,

Springer International Publishing, Cham, 2019, pp. 161–166,

series Title: Lecture Notes in Computer Science. doi:10.1007/

978-3-030-32327-1_32.

[32] O. Pelgrin, L. Galárraga, K. Hose, Towards fully-fledged archiv-

ing for RDF datasets, Semantic Web Journal 12 (6) (2021) 903–

925. doi:10.3233/SW-210434.

[33] N. Noy, M. Musen, Promptdiff: A Fixed-Point Algorithm for

Comparing Ontology Versions, in: Proc. of IAAI, 2002, pp. 744–

750.

[34] M. Graube, S. Hensel, L. Urbas, Open semantic revision control

with r43ples: Extending sparql to access revisions of named

graphs, in: Proceedings of the 12th International Conference

on Semantic Systems, 2016, pp. 49–56.

[35] M. Sande, P. Colpaert, R. Verborgh, S. Coppens, E. Mannens,

R. Walle, R&Wbase: Git for triples, in: Proceedings of the 6th

Workshop on Linked Data on the Web. 996. CEUR Workshop

Proceedings, 2013, pp. 1–5.

[36] N. Arndt, P. Naumann, N. Radtke, M. Martin, E. Marx, Decen-

tralized collaborative knowledge management using git, Journal

of Web Semantics 54 (2019) 29–47. doi:https://doi.org/10

.1016/j.websem.2018.08.002.

[37] J. D. Fernández, J. Umbrich, A. Polleres, M. Knuth, Evaluating

query and storage strategies for RDF archives, Semantic Web

10 (2) (2019) 247–291. doi:10.3233/SW-180309.

URL https://doi.org/10.3233/SW-180309

[38] M. Daquino, S. Peroni, D. Shotton, The OpenCitations Data

Model, artwork Size: 836876 Bytes Publisher: figshare (2020).

doi:10.6084/M9.FIGSHARE.3443876.V7.

URL https://figshare.com/articles/online_resource/Meta

data_for_the_OpenCitations_Corpus/3443876/7

[39] L. F. Sikos, D. Philp, Provenance-Aware Knowledge Represen-

tation: A Survey of Data Models and Contextualized Knowl-

edge Graphs, Data Science and Engineering 5 (3) (2020) 293–

316. doi:10.1007/s41019-020-00118-0.

URL https://link.springer.com/10.1007/s41019-020-001

18-0

[40] F. Manola, E. Miller, RDF Primer (Feb. 2004).

URL http://www.w3.org/TR/2004/REC-rdf-primer-2004021

0/

[41] D. Beckett, RDF Syntaxes 2.0 (Apr. 2010).

URL https://www.w3.org/2009/12/rdf-ws/papers/ws11

[42] W3C, Defining N-ary Relations on the Semantic Web (Dec.

2006).

URL http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelation

s-20060412/

[43] P. Groth, A. Gibson, J. Velterop, The anatomy of a nanop-

ublication, Information Services & Use 30 (1-2) (2010) 51–56.

doi:10.3233/ISU-2010-0613.

URL https://www.medra.org/servlet/aliasResolver?alias=

iospress&doi=10.3233/ISU-2010-0613

[44] O. Udrea, D. R. Recupero, V. S. Subrahmanian, Annotated

RDF, ACM Transactions on Computational Logic 11 (2) (2010)

1–41. doi:10.1145/1656242.1656245.

URL https://dl.acm.org/doi/10.1145/1656242.1656245

[45] Y. Gil, J. Cheney, P. Groth, O. Hartig, S. Miles, L. Moreau,

P. Silva, Provenance XG Final Report, type: W3C. (Dec. 2010).

URL http://www.w3.org/2005/Incubator/prov/XGR-prov-2

0101214/

[46] A. Gschwend, O. Lassila, PROPOSED RDF-star working group

charter (2022).

URL https://w3c.github.io/rdf-star-wg-charter/

[47] PROV-DM: The PROV data model (2013).

URL http://www.w3.org/TR/2013/REC-prov-dm-20130430/

[48] J. Tappolet, A. Bernstein, Applied temporal RDF: Efficient

temporal querying of RDF data with SPARQL, in: L. Aroyo,

P. Traverso, F. Ciravegna, P. Cimiano, T. Heath, E. Hyvönen,

R. Mizoguchi, E. Oren, M. Sabou, E. Simperl (Eds.), The Se-

mantic Web: Research and Applications, Vol. 5554, Springer

Berlin Heidelberg, 2009, pp. 308–322, series Title: Lecture

Notes in Computer Science. doi:10.1007/978-3-642-02121

-3_25.

[49] F. Grandi, T-sparql: A tsql2-like temporal query language for

rdf., in: ADBIS (local proceedings), 2010, pp. 21–30.

[50] C. Zaniolo, S. Gao, M. Atzori, M. Chen, J. Gu, User-friendly

temporal queries on historical knowledge bases, Information and

Computation 259 (2018) 444–459. doi:10.1016/j.ic.2017.08

.012.

[51] V. Fionda, M. W. Chekol, G. Pirrò, Gize: A time warp in the

23

https://www.worldscientific.com/doi/abs/10.1142/S0218194012500040
http://ieeexplore.ieee.org/document/7786197/
https://doi.org/10.1109/DCC.2016.40
http://ieeexplore.ieee.org/document/7786197/
https://doi.org/https://doi.org/10.1016/j.websem.2018.08.001
https://doi.org/10.1007/978-3-030-32327-1_32
https://doi.org/10.1007/978-3-030-32327-1_32
https://doi.org/10.3233/SW-210434
https://doi.org/https://doi.org/10.1016/j.websem.2018.08.002
https://doi.org/https://doi.org/10.1016/j.websem.2018.08.002
https://doi.org/10.3233/SW-180309
https://doi.org/10.3233/SW-180309
https://doi.org/10.3233/SW-180309
https://doi.org/10.3233/SW-180309
https://figshare.com/articles/online_resource/Metadata_for_the_OpenCitations_Corpus/3443876/7
https://figshare.com/articles/online_resource/Metadata_for_the_OpenCitations_Corpus/3443876/7
https://doi.org/10.6084/M9.FIGSHARE.3443876.V7
https://figshare.com/articles/online_resource/Metadata_for_the_OpenCitations_Corpus/3443876/7
https://figshare.com/articles/online_resource/Metadata_for_the_OpenCitations_Corpus/3443876/7
https://link.springer.com/10.1007/s41019-020-00118-0
https://link.springer.com/10.1007/s41019-020-00118-0
https://link.springer.com/10.1007/s41019-020-00118-0
https://doi.org/10.1007/s41019-020-00118-0
https://link.springer.com/10.1007/s41019-020-00118-0
https://link.springer.com/10.1007/s41019-020-00118-0
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
https://www.w3.org/2009/12/rdf-ws/papers/ws11
https://www.w3.org/2009/12/rdf-ws/papers/ws11
http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/
http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/
http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/ISU-2010-0613
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/ISU-2010-0613
https://doi.org/10.3233/ISU-2010-0613
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/ISU-2010-0613
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/ISU-2010-0613
https://dl.acm.org/doi/10.1145/1656242.1656245
https://dl.acm.org/doi/10.1145/1656242.1656245
https://doi.org/10.1145/1656242.1656245
https://dl.acm.org/doi/10.1145/1656242.1656245
http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
https://w3c.github.io/rdf-star-wg-charter/
https://w3c.github.io/rdf-star-wg-charter/
https://w3c.github.io/rdf-star-wg-charter/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://doi.org/10.1007/978-3-642-02121-3_25
https://doi.org/10.1007/978-3-642-02121-3_25
https://doi.org/10.1016/j.ic.2017.08.012
https://doi.org/10.1016/j.ic.2017.08.012

web of data, in: SEMWEB, 2016.

[52] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,

P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer,

C. Bizer, DBpedia – A large-scale, multilingual knowledge base

extracted from Wikipedia, Semantic Web 6 (2) (2015) 167–195.

doi:10.3233/SW-140134.

URL https://www.medra.org/servlet/aliasResolver?alias=

iospress&doi=10.3233/SW-140134

[53] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez,

D. Vrandečić, Introducing Wikidata to the Linked Data Web,

in: The Semantic Web – ISWC 2014, Springer International

Publishing, 2014, pp. 50–65.

[54] Wikidata:Database download (Jun. 2021).

URL https://www.wikidata.org/wiki/Wikidata:Database_d

ownload

[55] M. Völkel, W. Winkler, Y. Sure, S. Kruk, M. Synak, SemVer-

sion: A Versioning System for RDF and Ontologies, in: Proc.

of ESWC, 2005.

[56] J. D. Fernández, M. A. Mart́ınez-Prieto, C. Gutiérrez,

A. Polleres, M. Arias, Binary RDF representation for publica-

tion and exchange (HDT), Journal of Web Semantics 19 (2013)

22–41. doi:https://doi.org/10.1016/j.websem.2013.01.002.

[57] J. Anderson, RDF graph stores as convergent datatypes, in:

Companion Proceedings of The 2019 World Wide Web Confer-

ence, ACM, 2019, pp. 940–942. doi:10.1145/3308560.3316517.

[58] P. Meinhardt, M. Knuth, H. Sack, Tailr: A platform for preserv-

ing history on the web of data, in: Proceedings of the 11th In-

ternational Conference on Semantic Systems, SEMANTICS ’15,

Association for Computing Machinery, New York, NY, USA,

2015, p. 57–64. doi:10.1145/2814864.2814875.

[59] S. M. Jones, M. Klein, H. V. d. Sompel, M. L. Nelson, M. C.

Weigle, Interoperability for accessing versions of web resources

with the memento protocol, in: D. Gomes, E. Demidova,

J. Winters, T. Risse (Eds.), The Past Web: Exploring Web

Archives, Springer International Publishing, 2021, pp. 101–126.

doi:10.1007/978-3-030-63291-5_9.

[60] I. Heibi, S. Peroni, D. Shotton, Software review: COCI, the

OpenCitations Index of Crossref open DOI-to-DOI citations,

Scientometrics 121 (2) (2019) 1213–1228. doi:10.1007/s11192

-019-03217-6.

URL http://link.springer.com/10.1007/s11192-019-03217

-6

[61] R. Falco, A. Gangemi, S. Peroni, D. Shotton, F. Vitali,

Modelling OWL Ontologies with Graffoo, in: V. Presutti,

E. Blomqvist, R. Troncy, H. Sack, I. Papadakis, A. Tordai

(Eds.), The Semantic Web: ESWC 2014 Satellite Events, Vol.

8798, Springer International Publishing, Cham, 2014, pp. 320–

325, series Title: Lecture Notes in Computer Science. doi:

10.1007/978-3-319-11955-7_42.

URL http://link.springer.com/10.1007/978-3-319-11955

-7_42

[62] R. Watson, M. Cleary, D. Jackson, G. E. Hunt, Open access

and online publishing: a new frontier in nursing?: Editorial,

Journal of Advanced Nursing 68 (9) (2012) 1905–1908. doi:

10.1111/j.1365-2648.2012.06023.x.

URL https://onlinelibrary.wiley.com/doi/10.1111/j.1365

-2648.2012.06023.x

[63] A. Massari, time-agnostic-library (Sep. 2022).

URL https://archive.softwareheritage.org/swh:1:snp:

3dbff3452c2e3ed0b96c3de75a27a973c262b0ff

[64] J. Fernández, A. Polleres, J. Umbrich, Towards Efficient Archiv-

ing of Dynamic Linked, in: DIACRON@ESWC, Computer Sci-

ence, Portorož, Slovenia, 2015, pp. 34–49.

[65] L. SYSTAP, The bigdata® RDF Database (May 2013).

URL https://blazegraph.com/docs/bigdata_architecture_w

hitepaper.pdf

[66] K. Beck, Test-driven development: by example, The Addison-

Wesley signature series, Addison-Wesley, Boston, 2003.

[67] A. Massari, Documentation of time-agnostic-library software

(Sep. 2022). doi:10.5281/zenodo.7046272.

[68] G. Hendricks, D. Tkaczyk, J. Lin, P. Feeney, Crossref: The sus-

tainable source of community-owned scholarly metadata, Quan-

titative Science Studies 1 (1) (2020) 414–427. doi:10.1162/qs

s_a_00022.

URL https://direct.mit.edu/qss/article/1/1/414-427/155

77

[69] A. Massari, time agnostic (Sep. 2021).

URL https://archive.softwareheritage.org/swh:1:snp:

a4870cfd8555201cc8de64193cbb283758873660

[70] A. Massari, time-agnostic-library: benchmarks on execution

times and memory, version Number: 3.0.0 Type: software

(2022). doi:10.5281/ZENODO.5549648.

[71] A. Massari, time-agnostic-library: test datasets (May 2022).

doi:10.5281/zenodo.6399069.

24

https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-140134
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-140134
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/SW-140134
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:Database_download
https://doi.org/https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1145/3308560.3316517
https://doi.org/10.1145/2814864.2814875
https://doi.org/10.1007/978-3-030-63291-5_9
http://link.springer.com/10.1007/s11192-019-03217-6
http://link.springer.com/10.1007/s11192-019-03217-6
https://doi.org/10.1007/s11192-019-03217-6
https://doi.org/10.1007/s11192-019-03217-6
http://link.springer.com/10.1007/s11192-019-03217-6
http://link.springer.com/10.1007/s11192-019-03217-6
http://link.springer.com/10.1007/978-3-319-11955-7_42
https://doi.org/10.1007/978-3-319-11955-7_42
https://doi.org/10.1007/978-3-319-11955-7_42
http://link.springer.com/10.1007/978-3-319-11955-7_42
http://link.springer.com/10.1007/978-3-319-11955-7_42
https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2648.2012.06023.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2648.2012.06023.x
https://doi.org/10.1111/j.1365-2648.2012.06023.x
https://doi.org/10.1111/j.1365-2648.2012.06023.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2648.2012.06023.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2648.2012.06023.x
https://archive.softwareheritage.org/swh:1:snp:3dbff3452c2e3ed0b96c3de75a27a973c262b0ff
https://archive.softwareheritage.org/swh:1:snp:3dbff3452c2e3ed0b96c3de75a27a973c262b0ff
https://archive.softwareheritage.org/swh:1:snp:3dbff3452c2e3ed0b96c3de75a27a973c262b0ff
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://doi.org/10.5281/zenodo.7046272
https://direct.mit.edu/qss/article/1/1/414-427/15577
https://direct.mit.edu/qss/article/1/1/414-427/15577
https://doi.org/10.1162/qss_a_00022
https://doi.org/10.1162/qss_a_00022
https://direct.mit.edu/qss/article/1/1/414-427/15577
https://direct.mit.edu/qss/article/1/1/414-427/15577
https://archive.softwareheritage.org/swh:1:snp:a4870cfd8555201cc8de64193cbb283758873660
https://archive.softwareheritage.org/swh:1:snp:a4870cfd8555201cc8de64193cbb283758873660
https://archive.softwareheritage.org/swh:1:snp:a4870cfd8555201cc8de64193cbb283758873660
https://doi.org/10.5281/ZENODO.5549648
https://doi.org/10.5281/zenodo.6399069

	Introduction
	Related works
	Representing dynamic linked data
	Querying dynamic linked data
	Storing dynamic linked open data

	Methodology
	Version and delta materialization
	Single and cross-version structured query
	Single and cross-delta structured query
	Implementation

	Evaluation and discussion
	Conclusion

