
Performing live time-traversal queries on RDF datasets
Arcangelo Massari Digital Humanities and Digital Knowledge, University of Bologna
arcangelo.massari@unibo.it — https://orcid.org/0000-0002-8420-0696 Supervisor Prof. Silvio Peroni

The most prominent knowledge bases do not
support SPARQL time-traversal queries

Verifiability, not truth. We need provenance

"The threshold for inclusion in Wikipedia is verifiability, not truth“
(Garfinkel 2008)
o Trustworthiness must be evaluated by each application probing by the

context of the statements
o Provenance: people, institutions, entities, and activities involved in

producing, influencing, or delivering data

Data evolves. We need change-tracking

o Natural evolution of
concepts, related to a
change of place,
jurisdiction, subjective
perception of the
receiver

o Correction of mistakes
o The latest version of

knowledge may not be
the most accurate

We need provenance and change-tracking in RDF

o The most extensive RDF datasets – DBPedia, Wikidata, Yago, and the
Dynamic Linked Data Observatory – do not use RDF to track changes
and provenance. Some of them, such as YAGO 4, record provenance but
not changes

o Therefore, such knowledge bases do not allow users to perform time-
traversal SPARQL queries

Objective

o A methodology to perform SPARQL time-traversal queries on RDF
datasets and software based on this procedure

o Enabling all the time-related retrieval functionalities defined by
(Fernández et al., 2016) live

Time-related retrieval functionalities

o Version materialization (VM): retrieves data using a query targeted at a
single version

o Delta materialization (DM): retrieves query’s result change sets
between two versions

o Version query (VQ): annotates a query’s results with the versions in
which they are valid

o Cross-version join (CV): joins the results of queries between different
versions

o Change materialization (CM): returns a list of versions in which a given
query produces consecutively different results

38%

5%
57%

90,000 RDF DOCUMENTS MONITORED
FOR 29 WEEKS (KÄFER ET AL. 2013)

Modified Dead Unmodified

The OpenCitations provenance model was adopted
to manage both provenance and change-tracking

Representing provenance in RDF

o Origin of the first sin: RDF 1.0 and RDF Reification
o Many alternatives have no concrete implementation and are only

theoretical models (Sikos et al. 2020)
o Named Graphs and the Provenance Ontology are the most adopted

approaches
o Recent promising solution: RDF*

OpenCitations Data Model (OCDM)

o It combines Named Graphs
and the Provenance
Ontology (Daquino et al.)

o Change-based storage
policy: it stores deltas
using SPARQL
INSERT DATA and
DELETE DATA operations

How to rebuild past versions and achieve VM, VQ, and CV

o According to the OCDM, only deltas are stored; therefore, the dataset's
past conditions must be reconstructed to query those states.

o However, restoring as many versions as snapshots would generate
massive amounts of data, consuming time and storage. The adopted
solution was to reconstruct only the past resources significant for the
user's query

o To recover the status of an entity to a particular snapshot si, apply the
inverse update queries from the most recent snapshot sn to si+1

Time-Agnostic Library enables all the time-related
retrieval functionalities via SPARQL live

Delta and change materializations are straightforward

o Delta queries can help understand which resources have changed,
narrow the field, and achieve faster queries on versions if the subject is
unknown

o The procedure is similar to the one for version queries, but with a crucial
difference. Once the relevant entities have been found, there is no
reason to rebuild their past conditions because deltas are explicitly
stored according to the OpenCitations Data Model

Time-agnostic-library

o Such methodology was implemented in a Python package
o It is available open-source on GitHub under ISC License
o It can be installed with pip
o Test driven development: 141 tests (98% coverage)

Evaluation of time-agnostic-library

o Two benchmarks: execution times and memory
o Ten queries repeated ten times on twenty random entities having

variable number of provenance snapshots (from 2 to 35)
o Benchmarks were performed on Blazegraph, GraphDB Free Edition,

Apache Jena Fuseki, and OpenLink Virtuoso
o The benchmarks are fully reproducible by simply running a bash script

(Massari 2022)

o Compared to other software to achieve time-agnostic SPARQL queries,
time-agnostic-library support all retrieval functionalities live and
without requiring pre-indexing processes

Software Queries Live
SemVersion VM, DM +
X-RDF-3X VM, DM +
RBDMS All -
R&Wbase All +
R43ples All +
TailR VM, VQ, CV, CM +
V-RDFCSA VM, DM, V +
Dydra All -
OSTRICH All -
QuitStore All ?
Time-agnostic-library All +

Retrieval functionality Time on Fuseki RAM on Fuseki
Median Stdev Median Stdev

VM, VQ 11.5s 6.57s 96.3MB 36.3MB
CV 15.6s 8.73s 156MB 78.9MB
CV where the subject is unknown 240s 28.3s 307MB 137MB

DM and CM 13.8s 7.74s 98.8MB 37.5MB

DM and CM where the subject is unknown 165s 26.9s 74.4MB 0.129MB

mailto:arcangelo.massari@unibo.it
https://orcid.org/0000-0002-8420-0696
https://stephencodrington.com/Blogs/Hong_Kong_Blog/Entries/2009/4/11_What_is_Truth_files/Wikipedia%20and%20the%20Meaning%20of%20Truth.pdf
https://www.semantic-web-journal.net/system/files/swj1814.pdf
https://doi.org/10.1007/978-3-642-38288-8_15
https://doi.org/10.5281/zenodo.5579701

